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Chi-square statistics are commonly used for tests of fit of measurement models. Chi-square is also sensi-
tive to sample size, which is why several approaches to handle large samples in test of fit analysis have been 
developed. One strategy to handle the sample size problem may be to adjust the sample size in the analysis of fit. 
An alternative is to adopt a random sample approach. The purpose of this study was to analyze and to compare 
these two strategies using simulated data. 

Given an original sample size of 21,000, for reductions of sample sizes down to the order of 5,000 the adjusted 
sample size function works as good as the random sample approach. In contrast, when applying adjustments 
to sample sizes of lower order the adjustment function is less effective at approximating the Chi-square value 
for an actual random sample of the relevant size. Hence, the fit is exaggerated and misfit under-estimated using 
the adjusted sample size function. Although there are big differences in Chi-square values between the two ap-
proaches at lower sample sizes, the inferences based on the p-values may be the same. 
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Introduction

Social and medical scientists sometimes rely 
on p-values rather than effect sizes or descriptions 
by other means (Lantz, 2013) when reporting and 
interpreting statistical analyses, which is also 
encouraged by journals arguing that they have 
limited space. However, it also seems to be com-
mon to use large samples, following the rationale 
that larger samples makes it easier to detect small 
effects (Veldhuizen, Pasker-De Jong, and Atsma, 
2012). The combination of using large samples 
and relying solely on p-values for statistical inter-
pretation is, however, not a good idea. 

Significance tests are commonly sensitive to 
sample size; given that a sample is large enough 
even trivial differences will turn up as significant 
(Martin-Löf, 1973, 1974). Thus, there is an evi-
dent danger of drawing false conclusions based 
on the combination of large samples and mechani-
cally relying on p-values as the only source of 
information, a phenomenon labeled “The large 
sample size fallacy” (Lantz, 2013). However, it 
is important to also recognize the opposite prob-
lem, i.e., that the analyst sometimes has too small 
samples, or too low power, in order to statistically 
identify substantial differences. 

From a Rasch measurement perspective, the 
implications of “The large sample size fallacy” are 
somewhat different. Statistics, for instance Chi-
square, are commonly used in order to analyze the 
concordance between the data and the expected 
Rasch model (Rasch, 1960). Thus, when using a 
large sample size, the parameters will be estimated 
with great precision, which further means that 
even very small differences between the expected 
Rasch model and the observed data will be readily 
exposed, and consequently, no items are likely 
to fit the model (Andrich, 1988). Put differently, 
when applying a large sample, the power to detect 
misfit is so great that even if observed and ex-
pected values are very close, all items will misfit 
(Andrich, Sheridan, and Luo, 2009). Therefore, 
using a large sample and mechanically relying on 
traditional fit statistics, will almost automatically 
discard any model tested. 

In this study the concordance between 
observed data and the expected Rasch model is 
analysed by means of the Rasch model for ordered 
response categories, also called the polytomous 
Rasch model. The Rasch model for ordered 
response categories (Andrich, 1978; Wright and 
Masters, 1982) takes the general form:
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Thus, in the polytomous case a central 
concept is threshold. Given a situation with five 
response categories (0, 1, 2, 3, 4), a threshold 
specifies the point at which the probability for 
choosing one of two answers is equal, for instance 
an answer of 0 or 1. In the equation above the 
threshold parameter is denoted by t and the item 
score by x in the numerator. Given that there is 
concordance between the expected Rasch model 
and the data, the item discriminations are the 
same, as is illustrated in Figure 1.

For illustrative purposes only, Table 1 shows 
an analysis based on simulations of perfect cir-
cumstances using different sample sizes, with 
10 repetitions at each sample size (10 items in 
10 class intervals (df = 90). The values in Table 
1 are Chi-square values with their probabilities 
reflecting the statistical concordance between the 
expected polytomous Rasch model and the data. 

 Thus, using a sample larger than 5,000 in-
dividuals would reveal significant results also in 
perfect circumstances. 

A suggested strategy has therefore been to 
combine statistical analysis of fit with descriptive, 
graphical analysis (Andrich, 1988). In Figure 2 
an example of that sort of analysis is provided by 
means of an item characteristic curve (ICC), for 
the worst fitting item of simulation 1 from Table 
1, using 21,000 individuals. Even though this 
example constitutes the worst fitting item, the 
observations are located on the according to the 
Rasch model expected curve, i.e., the deviations 
between observed data and the expected Rasch 
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model are very small. Nevertheless, the statistical 
counterpart to the ICC shows misfit for all items 
applying the same sample size. 

However, due to space limitations that is not 
always possible—the journal format sometimes 
requires a one-number solution describing model 
fit. Therefore, several different approaches to 
handle the sample size problem, and tangent 
issues, have been discussed elsewhere (see for 
instance: (Gustafsson, 1980; Tennant and Pal-
lant, 2012; Wright and Masters, 1982; Wright 
and Linacre, 1994; Wright and Masters, 1990). 

In the RUMM2030 program (Andrich, Sheri-
dan, and Luo, 2013), a facility enabling sample 
size adjustment in the statistical analysis of fit 
has been implemented, implying that sample 
size, all other things being equal, is adjusted in 
the analysis. The Chi-square statistic for test of 
fit is conducted by comparing the total score of 
persons in approximately equal sized class in-
tervals, with the sum of expected values. This is 
resulting in an approximate Chi-square statistic 
with C-1 degrees of freedom and which is, in 
accordance with Andrich and Styles (2011 PG 
81), denoted by:

1 
 

Figure 1. An example of a Category Probability Curve showing the latent dichotomous threshold 

characteristic curves with equal slopes.  

Figure 1. An example of a Category Probability Curve showing the latent dichotomous 
threshold characteristic curves with equal slopes. 

2 
 

Figure 2. Item Characteristic Curve for the worst fitting item from simulation 1 Table 1, using 21,000 

individuals. 

Figure 2. Item Characteristic Curve for the worst fitting item from simulation 1 Table 1, using 21,000 
individuals.
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Following Andrich and Styles (2011 PG 81), 
the Chi-square test of fit statistic can be adjusted 
to an equivalent effective sample of different size 
by applying the rationale:
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The number of persons in class interval C is then 
denoted by nc,

[ ] ,/ ; /ci ni c ci ni c
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and by constructing class intervals,

 .c
Nn
C

≈

As the outcome of equation (3) is propor-
tional to the original sample size (N), in order to 
adjust the analysis to a smaller equivalent effec-
tive sample size (n), the Chi-square value obtained 
using the original sample size should be multi-
plied by n/N (Andrich and Styles, 2011). Thus, 
by adjusting the analysis to a smaller equivalent 
effective sample size, the Chi-square test of fit 
is expected to be less sensitive to sample size 
(Andrich and Styles, 2011), but with the residuals 
reflecting the degree of precision available in the 
original sample. 

The RUMM2030 adjustment facility has 
been available for long time, but still there seems 
to be a lack of studies describing the empirical 
operational characteristics of the function, i.e., the 
empirical consequences of adjusting a sample to 
a smaller effective sample size in the statistical 
analysis of fit. Alternatively, a random sample 

approach could be adopted in order to handle 
the sample size problem. The purpose of this 
study was to analyze and to compare these two 
strategies as test of fit approximations, using 
simulated data. 

Methods

Frame of reference

The analyses conducted in accordance with 
the purpose of this paper are based on simulated 
data with different degrees of fit using RUMMss 
simulation package (Marais and Andrich, 2012). 
For illustrative purposes and as a frame of refer-
ence, simulated data of perfect concordance to 
the polytomous Rasch model was simulated. 
Using 10 items, and with a person mean of 0.0, 
a standard deviation of 2.0, item locations were 
simulated to range between −3 and 3 logits. The 
first threshold was set to −3 logits and the last 
threshold to 3. Item discriminations were set to 
1.00 for all items. As extreme person locations 
would violate the model characteristics, extreme 
scores were excluded in the simulation procedure. 

The simulation procedure was conducted for 
different sample sizes (21,000, 15,000, 10,000, 
5,000, 3,000, 1,000 and 500) and was repeated 
10 times for each sample size. Total Chi-square 
values were calculated for each simulation. As an 
overall indicator of the level of fit, mean-square 
values were calculated by the summated total Chi-
square values divided by the total df, implying an 
expected value of 1 (this analysis is reported in 
Table 1). Thus, this fit statistic is similar to that of 
Outfit, often referred to in Winsteps contexts, but 
sometimes also called the reduced Chi-squared or 
the mean square weighted deviation. 

Two scenarios

In addition, two scenarios were simulated. 
First, a realistic situation of fitting data relatively 
well targeted and with item discriminations of 
1.00 across items, but allowing for extreme scores 
was simulated. In the second scenario, a realistic 
situation of misfitting data was simulated. Item 
discriminations were then simulated to vary 
substantially across items, ranging from 0.5 for 
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poor discriminations to 1.5 for high discrimina-
tions. Thus the model was violated by varying the 
item discriminations. In the two scenarios item 
difficulties were set to range between −3.00 and 
3.00 logits. Also in both of the scenarios, the es-
timated model includes 7 polytomous items (with 
5 response categories) and with persons grouped 
into 10 equal sized class intervals based on the 
person locations of the whole sample (df = 63). 
The number of items used here is analogous with 
prior and ongoing work on real data not yet pub-
lished, but is also considered to be common item 
compositions in social and medical sciences. The 
response format implies 28 item thresholds in to-
tal, and threshold values were simulated to (−1.00, 
−0.300, 0.300 and 1.00) be equal for each item. 

In order to facilitate the study of trends 
of Chi-square values when moving from one 
sample size to a smaller, starting with an original 
sample size of 21,000, the sample was adjusted 
to 19,000, 15,000, 12,000, 10,000, 7,000, 5,000, 
3000, 2,000, 1,000, 750, 500, 300, and 100 for 
each of the two simulated scenarios, using the 
RUMM2030 sample size adjustment function. By 
adjusting the analysis to several different effective 
sample sizes, the observation of inconsistencies 
in Chi-square value trends is possible. 

However, in order to qualify the analysis, the 
Chi-square values obtained using the adjustment 
function need to be compared to external values, 
i.e., values that are obtained not using the adjust-
ment function, but values that would be expected 
provided the specific sample size and level of 
fit. Thus, following statistical principles, aver-
aged Chi-square values based on sets of random 
samples are considered to be a good Chi-square 
value approximation. Therefore, 10 random 
samples with replacement were drawn for each 
sample size and averaged total Chi-square values 
calculated. These were then compared with the 
total Chi-square values obtained using the sample 
size adjustment function in the RUMM2030 
software, for each of the different sample sizes, 
and for each of the two scenarios. In addition, 
mean-square values were calculated by dividing 
the summated total Chi-square values with the 
total number of df, implying an expected value 

of 1. This calculation was performed for random 
samples as well as adjusted samples. It should, 
however, be noticed that when generating random 
samples similar to the original sample in terms 
of size, the two will be highly dependent on each 
other, i.e., largely containing the same individuals. 

The concordance between the Rasch model 
and the observed data was analysed by means 
of the polytomous Rasch model, also called the 
Rasch model for ordered response categories. All 
analyses were conducted using the RUMM2030 
software (Andrich et al., 2013). 

Results

Figure 3 and Figure 4 depict the distribution 
of persons relative to item thresholds in the two 
simulated scenarios of relatively well-targeted 
fitting and misfitting data, respectively. In the 
case of fit (Figure 3) the results imply a mean of 0 
and standard deviation of 2 for persons and items 
respectively. The scenario of misfit, as is shown 
in Figure 4, reveals a person mean of 0.1 and a 
standard deviation of 1.64, and similar figures for 
items (0 and 1.76 respectively). 

In Table 2, the comparison between the 
random sample approach and the RUMM2030 
adjustment function is displayed for fitting 
data. A general pattern observable implies de-
creasing Chi-square values when moving from 
one sample size to a smaller, which is true for 
adjusted samples as well as random samples of 
different sizes. At sample sizes of 19,000 and 
15,000 the random sample/adjustment function 
ratio is smaller than 1, but at all other sample 
sizes the ratio is bigger than 1, i.e., the total Chi-
square value obtained using the random sample 
approach is bigger than that obtained using the 
RUMM2030 adjustment facility. At sample 
sizes between 19,000 and 5,000, the differences 
between Chi-square values obtained using the 
random sample approach and the adjustment 
facility approach are small (the ratio is close to 
1). However, at sample sizes smaller than 5,000, 
the ratio is generally and gradually increasing as 
turning from one sample size to a smaller. Based 
on the p-values, when using the adjustment func-
tion data start to fit the model at a sample size of 
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about 2,000 individuals, while the corresponding 
sample size for random samples is 1,000, which 
is also reflected in the mean-square values. From 
Table 2 it can also be seen that the mean-squares 
are varying substantially for adjusted Chi-squares 
when adjusting to sample sizes between 2,000 and 
100 individuals, while they are largely constant 
for random samples. However, using a sample 
size of 1,000, and based on p-values, the analyst 
would reach the same conclusion of whether the 
data fits the model or not, regardless of which of 
the two methods used. As shown in Table 3, this 

is also confirmed at the item level, given samples 
of 1,000 but not 3,000. In Table 3, it should also 
be noticed that the relationship between items 
for adjusted samples, i.e., the best or worst fitting 
items are the same at different adjustments, but 
not for random samples due to the nature of the 
simulated data (well fitted = small differences) in 
combination with random variation. 

Applying misfitting data, the overall pattern 
is the same, but less pronounced. For instance, 
at sample sizes between 19,000 and 1,000 the 
differences between the random sample approach 

3 
 

 

Figure 3. Person-Item Threshold Distribution, a realistic situation with fitting data simulated.  

 

Figure 3. Person-Item Threshold Distribution, a realistic situation with fitting data simulated. 

Location (logits)

4 
 

Figure 4. Person-Item Threshold Distribution, a realistic situation with misfitting data simulated.  

 

Figure 4. Person-Item Threshold Distribution, a realistic situation with misfitting data simulated. 

Location (logits)



8	 Bergh
Ta

bl
e 

2 
C

om
pa

ri
so

ns
 b

et
w

ee
n 

to
ta

l C
hi

-s
qu

ar
e 

va
lu

es
 b

as
ed

 o
n 

di
ffe

re
nt

 sa
m

pl
e 

si
ze

s u
si

ng
 th

e 
RU

M
M

20
30

 a
dj

us
tm

en
t f

un
ct

io
n,

 a
nd

 a
ve

ra
ge

 to
ta

l C
hi

-
sq

ua
re

 v
al

ue
s 

ba
se

d 
on

 1
0 

ra
nd

om
 s

am
pl

es
 fo

r 
ea

ch
 s

am
pl

e 
si

ze
 (s

ig
ni

fic
an

t d
iff

er
en

ce
s 

ar
e 

bo
ld

ed
*)

, t
he

 c
or

re
sp

on
di

ng
 M

ea
n-

sq
ua

re
 v

al
ue

s 
al

so
 p

ro
vi

de
d.

 

Fi
tti

ng
 d

at
a 

(7
 p

ol
yt

om
ou

s 
ite

m
s,

 1
0 

cl
as

s 
in

te
rv

al
s,

 d
f =

 6
3)

. 

						








M
ea

n-
	

A
ve

ra
ge

d		


M
ea

n-
	

R
at

io
 

		


C
hi

-s
qu

ar
e			




P
ro

b.
	

sq
ua

re
	

C
hi

-s
qu

ar
e	

P
ro

b.
	

S
qu

ar
e	

av
er

ag
ed

 
	

S
am

pl
e	

or
ig

in
al

		


A
dj

us
te

d	
A

dj
us

te
d	

ad
ju

st
ed

	
R

an
do

m
	

ra
nd

om
	

ra
nd

om
	

C
hi

-s
qu

ar
e/

 
	

si
ze

	
sa

m
pl

e	
P

ro
b.

	
C

hi
-s

qu
ar

e	
C

hi
-s

qu
ar

e	
C

hi
-s

qu
ar

e	
sa

m
pl

es
	

sa
m

pl
es

	
sa

m
pl

es
	

ad
ju

st
ed

 C
hi

-s
qu

ar
e

	
21

,0
00

	
66

1.
8	

0.
00

00
00

							










	
19

,0
00

			



61

6.
4	

0.
00

00
00

	
9.

78
	

60
1.

7	
0.

00
00

00
	

9.
55

	
0.

98

	
15

,0
00

			



48

6.
6	

0.
00

00
00

	
7.

72
	

48
2.

1	
0.

00
00

00
	

7.
65

	
0.

99

	
12

,0
00

			



38

9.
3	

0.
00

00
00

	
6.

17
	

39
4.

4	
0.

00
00

00
	

6.
26

	
1.

01

	
10

,0
00

			



32

4.
4	

0.
00

00
00

	
5.

15
	

33
7.

0	
0.

00
00

00
	

5.
35

	
1.

04

	
7,

00
0			




22
7.

1	
0.

00
00

00
	

3.
60

	
24

8.
7	

0.
00

00
00

	
3.

95
	

1.
10

	
5,

00
0			




16
2.

2	
0.

00
00

00
	

2.
57

	
19

7.
9	

0.
00

00
00

	
3.

14
	

1.
22

	
3,

00
0			




97
.3

	
0.

00
35

92
	

1.
54

	
13

8.
1	

0.
00

00
02

	
2.

21
	

1.
42

	
2,

00
0			




64
.9

	
0.

41
09

68
	

1.
03

	
10

3.
9	

0.
00

09
05

	
1.

65
	

1.
60

	
1,

00
0			




32
.4

	
0.

99
95

02
	

0.
51

	
69

.8
	

0.
25

97
25

	
1.

11
	

2.
15

	
75

0			



24

.3
	

0.
99

99
97

	
0.

39
	

68
.8

	
0.

28
75

20
	

1.
09

	
2.

83

	
50

0			



16

.2
	

1.
00

00
00

	
0.

26
	

59
.5

	
0.

60
18

19
	

0.
94

	
3.

67

	
30

0			



9.

7	
1.

00
00

00
	

0.
15

	
54

.9
	

0.
75

64
67

	
0.

87
	

5.
66

	
10

0			



3.

2	
1.

00
00

00
	

0.
05

	
52

.2
	

0.
83

22
37

	
0.

83
	

16
.3

1

*I
nd

ep
en

de
nt

 s
am

pl
es

 t-
te

st
s 

be
tw

ee
n 

C
hi

-S
qu

ar
e 

va
lu

es
 o

bt
ai

ne
d 

us
in

g 
th

e 
ra

nd
om

 s
am

pl
e 

ap
pr

oa
ch

 a
nd

 th
e 

R
U

M
M

20
30

 a
dj

us
tm

en
t f

ac
ili

ty
, f

or
 e

ac
h 

sa
m

pl
e 

si
ze

. P
-v

al
ue

s 
ar

e 
co

ns
id

er
ed

 a
s 

si
gn

ifi
ca

nt
 w

he
n 

p 
< 

0.
00

1



	 Chi-Squared Test of Fit and Sample Size	 9

Ta
bl

e 
3

C
om

pa
ri

so
ns

 b
et

w
ee

n 
in

di
vi

du
al

 it
em

 C
hi

-S
qu

ar
e v

al
ue

s b
as

ed
 o

n 
ad

ju
st

ed
 sa

m
pl

es
 a

nd
 a

ve
ra

ge
s b

as
ed

 o
n 

10
 ra

nd
om

 sa
m

pl
es

 u
si

ng
 3

,0
00

, 2
,0

00
 

an
d 

1,
00

0 
in

di
vi

du
al

s. 
 C

om
pa

ri
so

ns
 le

ad
in

g 
to

 d
iff

er
en

t c
on

cl
us

io
ns

 a
re

 b
ol

de
d.

 p
 <

 0
.0

5 
ar

e 
co

ns
id

er
ed

 a
s s

ig
ni

fic
an

t.

Fi
tti

ng
 d

at
a

			



A

ve
ra

ge
d		


A

ve
ra

ge
d		


A

ve
ra

ge
d 

			



C

hi
-s

qu
ar

e		


C
hi

-s
qu

ar
e		


C

hi
-s

qu
ar

e 
		


A

dj
us

te
d	

ra
nd

om
 s

am
pl

es
	

A
dj

us
te

d	
ra

nd
om

 s
am

pl
es

	
A

dj
us

te
d	

ra
nd

om
 s

am
pl

es
 

		


sa
m

pl
e 

to
 3

,0
00

	
n 

= 
3,

00
0	

sa
m

pl
e 

to
 n

 =
 2

,0
00

	
n 

= 
2,

00
0	

sa
m

pl
e 

to
 n

 =
 1

,0
00

	
n 

= 
1,

00
0

		


C
hi

-s
qu

ar
e	

C
hi

-s
qu

ar
e	

C
hi

-s
qu

ar
e	

C
hi

-s
qu

ar
e	

C
hi

-s
qu

ar
e	

C
hi

-s
qu

ar
e	 

	
Ite

m
	

(p
ro

ba
bi

lit
y)

	
(P

ro
ba

bi
lit

y)
	

(p
ro

ba
bi

lit
y)

	
(p

ro
ba

bi
lit

y)
	

(p
ro

ba
bi

lit
y)

	
(p

ro
ba

bi
lit

y)

1	
9.

79
5	

16
.7

71
4	

6.
53

	
13

.6
12

2	
3.

26
5	

8.
20

23
	

(0
.3

67
31

1)
	

(0
.0

52
41

9)
	

(0
.6

85
90

3)
	

(0
.1

36
80

4)
	

(0
.9

52
85

1)
	

(0
.5

13
89

5)

2	
14

.6
6	

20
.1

70
6	

9.
77

4	
15

.8
29

1	
4.

88
7	

10
.0

92
 

	
(0

.1
00

69
9)

	
(0

.0
16

88
8)

	
(0

.3
69

12
7)

	
(0

.0
70

53
7)

	
(0

.8
44

06
4)

	
(0

.3
43

08
9)

3	
18

.1
76

	
25

.7
93

9	
12

.1
18

	
14

.6
19

	
6.

05
9	

9.
88

55
 

	
(0

.0
33

18
3)

	
(0

.0
02

20
8)

	
(0

.2
06

76
6)

	
(0

.1
01

94
7)

	
(0

.7
34

02
4)

	
(0

.3
59

83
4)

4	
16

.8
31

	
20

.6
05

1	
11

.2
2	

16
.3

27
6	

5.
61

	
9.

87
5 

	
(0

.0
51

43
9)

	
(0

.0
14

52
4)

	
(0

.2
60

90
8)

	
(0

.0
60

34
8)

	
(0

.7
78

21
)	

(0
.3

60
69

9)

5	
15

.1
94

	
19

.8
23

9	
10

.1
29

	
17

.1
20

8	
5.

06
5	

9.
75

23
 

	
(0

.0
85

75
1)

	
(0

.0
19

03
1)

	
(0

.3
40

13
1)

	
(0

.0
46

85
8)

	
(0

.8
28

64
3)

	
(0

.3
70

90
8)

		


6	
13

.9
32

	
21

.3
92

7	
9.

28
8	

13
.0

81
7	

4.
64

4	
12

.3
49

 
	

(0
.1

24
77

8)
	

(0
.0

11
01

6)
	

(0
.4

11
14

6)
	

(0
.1

58
94

4)
	

(0
.8

64
18

2)
	

(0
.1

94
34

2)
		


7	

8.
73

1	
14

.4
16

9	
5.

82
	

13
.3

01
2	

2.
91

	
9.

63
07

 
	

(0
.4

62
49

2)
	

(0
.1

08
24

9)
	

(0
.7

57
74

1)
	

(0
.1

49
44

4)
	

(0
.9

67
74

7)
	

(0
.3

81
20

1)



10	 Bergh

9 
 

Figure 5. The Random sample/adjustment function ratio at different sample sizes. The two scenarios displayed 

simultaneously.   

Figure 5. The Random sample/adjustment function ratio at different sample 
sizes. The two scenarios displayed simultaneously.  

and the adjustment facility approach are small, 
i.e., the ratio is close to 1, as is shown in Table 4. 
According to the p-values, using the adjustment 
function would reveal non-significant results with 
adjustments to 750 individuals, while the corre-
sponding sample size for random samples is 300. 

The two scenarios taken together

Figure 5 shows the two scenarios simultane-
ously displayed in one single graph. From Figure 
5, it is evident that the two scenarios seem to work 
in a similar manner given sample sizes of between 
19,000 and 5,000 individuals. However, applying 
fitting data, the random sample/adjusted sample 
ratio increases gradually as the sample size is 
adjusted to each lower level. For instance, the 
ratio increase seems to be particularly pronounced 
when moving between adjustments to 500 and 
300 individuals. Given the situation with misfit, 
the ratio increase is at its highest levels at the same 
points, but is less pronounced. 

Discussion

The purpose of this study was to analyze and 
to compare the RUMM2030 adjust sample size 
function and a random sample approach as test 
of fit approximations, using simulated data with 
different degrees of fit. 

The overall pattern reveals that the Chi-
square values obtained using random samples 
are bigger compared to the adjusted ones. Given 

sample sizes ranging between 19,000 and 5,000, 
the random sample approach and the adjust 
sample approach seem to work in similar manner, 
i.e., the random sample/adjustment ratio is close 
to 1, regardless of the nature of data used. Put 
differently, given that the original (N = 21,000) 
sample size is adjusted to a larger proportion than 
approximately 0.24, the adjustment function and 
the random sample approach seem to work simi-
larly, which is true for fitting as well as misfitting 
data. Therefore, the adjust sample size function 
is considered to work well as a relevant test of fit 
approximation in these circumstances. 

However, for adjustments to smaller samples, 
the ratio increases substantially with decreasing 
sample size, in particular when using fitting data. 
Thus, in these circumstances the random sample/
adjustment ratio is substantially different from 
1 when adjusting to a sample size equivalent 
to 3,000 individuals or smaller, indicating that 
the Chi-square values are not comparable. For 
adjustments to each smaller sample size than ap-
proximately 14 percent of the original (equivalent 
to about 3,000 individuals) the ratio increases 
substantially. Thus, in these circumstances, the 
RUMM2030 adjustment function is not effective 
at approximating the Chi-square value for an 
actual random sample of relevant size. 

The differences between the results of using 
the two methods may highlighted by focusing 
on their respective Chi-square values and cor-
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responding p-values. For instance, using random 
samples and a sample size range between 1000 
and 100, reveal Chi-square values close to the 
number of degrees of freedom (i.e., mean-squares 
close to 1). However, the corresponding Chi-
square values for adjusted samples of equal size 
are much lower (p-values approximating 1.00) 
than the degrees of freedom, implying mean-
square values much lower than 1. For instance, 
provided the original sample of 21,000 and adjust-
ing to a size of 100 implies a mean-square value 
20 times lower than the expected value of 1, the 
value of a corresponding adjustment to a sample 
of 300 is about 7 times. Based on these findings 
it can be concluded that the adjustment of sample 
sizes mechanically will exaggerate the level of fit, 
and underestimate misfit, potentially leading to 
spurious acceptance of data as fitting the model 
when it actually misfits. 

Given the characteristics of the adjustment 
function, the results should not be surprising; 
when applying a big sample (e.g., 21,000 indi-
viduals) the parameters are estimated with great 
precision, and consequently with very small stan-
dard errors. Thus, adjusting the sample to a much 
smaller effective size, the same characteristics are 
applied, but in addition with much less power to 
detect misfit. Consequently, there seems to be 
an evident risk of reinforcing fit, in comparison 
to random samples of equal size. Therefore, the 
assumptions behind the adjustment function may 
be considered unrealistic in that data that fits so 
well with a small sample size would be hard to 
find in any real situation. 

Despite the diverging results between the 
two methods, it is important to recognize that 
the inference based on p-values may be the same 
provided big reductions in sample size (to 1,000 
or lower in this case). Thus, in the case of fitting 
data, the conclusion would be that the data fit the 
polytomous Rasch model, regardless of whether 
analyst is using a random sample approach or 
adjusts the sample.

Even though it may be argued that big sample 
size reductions using the adjustment function will 
exaggerate the actual level of fit compared to a 
random sample approach, using the adjustment 

will keep the item characteristics also with big 
reductions, also with small differences between 
items. This means that it is possible to identify 
which item shows the best or worst fit. Thus, the 
overall level of fit may be exaggerated, but the 
relationship between the items will remain as in 
the original data size. Due to random variation, 
using a small number of random samples may 
imply that the relationship between items will 
be changed, although providing a more realistic 
level of overall fit. 

Using big datasets, the solution is not to avoid 
Chi-square for statistical test of fit. The use of 
Chi-square is widespread within the social sci-
ences, and therefore it is easily communicated to 
a broad audience. Following statistical principles, 
also in the statistical analysis of fit, one solution 
would be to adopt both a random sample ap-
proach and to employ a sample size adjustment. 
Ideally, using large samples graphical analysis 
of the concordance between the expected Rasch 
model and the observed data may combined with 
statistical analyses of item fit in order to identify 
the relationship between items. As statistical 
significance tests are not meaningful using very 
large data, the sample may be adjusted to a level 
facilitating the analysis of item fit, but where a 
random sample approach may be used in order 
to estimate the actual level of fit. In that sense 
the adjustment function may serve as a tool for 
determining whether the random samples are 
accurate or not.

Ideally, software developers will provide 
solutions allowing for simultaneously generat-
ing numerous random samples and calculating 
averaged tests of fit statistics, for larger numbers 
of random samples, providing estimates of fit 
analysis corresponding to the actual level of fit, 
also at the item level.

Even if the issue is not addressed specifically 
in this paper, situations where the analyst has 
too small data, rather than too large, constitutes 
a significant problem, causing too low power in 
order to conduct realistic statistical analyses. In 
these circumstances, there are few options in ma-
nipulating the data in order to facilitate statistical 
analysis. Naturally the random sample approach 
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would not be a solution. Nor is the adjustment 
function an optimal solution. However, techni-
cally it would be possible to adjust the sample size 
from a small sample to a larger effective samples 
size in the statistical analysis of fit. Nevertheless, 
there will be a problem with exaggerated results, 
but not with fit exaggerated but misfit, causing 
significant results in more cases than expected. 
However, by employing smaller levels of adjust-
ments it may possible to reach an effective sample 
size large enough to conduct realistic statistical 
test of fit. 

Conclusion

Based on the analyses presented here, the 
RUMM2030 adjust sample size function works 
well as a test of fit approximation, given an 
original sample size of 21,000 and adjustments 
to sample sizes of 5,000 individuals (equivalent 
to approximately 24 percent of original size) or 
more, compared to sets of random samples. How-
ever, when applying adjustments to lower sample 
sizes the adjustment function is not considered 
to be effective at approximating the Chi-square 
value for an actual random sample of the relevant 
size, as there is an evident risk of spuriously 
accepting misfitting data. Nevertheless, infer-
ences based on p-values may be the same when 
adjustments are conducted to lower sample size 
levels. Working with large samples, the adjust-
ment function may be used as a heuristic tool in 
the analysis of fit. By adjusting the sample to a 
smaller effective sample it is possible to identify 
the relationship between items in terms of best 
and worst fitting items, while the actual level of 
fit may be estimated using a random sample ap-
proach. Thus, the adjustment function may serve 
as a tool in determining whether the random 
samples are accurate or not. 
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