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Chi-Squared Test of Fit and Sample Size—
A Comparison between a Random Sample Approach
and a Chi-Square Value Adjustment Method

Daniel Bergh
Karlstad University

Chi-square statistics are commonly used for tests of fit of measurement models. Chi-square is also sensi-
tive to sample size, which is why several approaches to handle large samples in test of fit analysis have been
developed. One strategy to handle the sample size problem may be to adjust the sample size in the analysis of fit.
An alternative is to adopt a random sample approach. The purpose of this study was to analyze and to compare
these two strategies using simulated data.

Given an original sample size of 21,000, for reductions of sample sizes down to the order of 5,000 the adjusted
sample size function works as good as the random sample approach. In contrast, when applying adjustments
to sample sizes of lower order the adjustment function is less effective at approximating the Chi-square value
for an actual random sample of the relevant size. Hence, the fit is exaggerated and misfit under-estimated using
the adjusted sample size function. Although there are big differences in Chi-square values between the two ap-
proaches at lower sample sizes, the inferences based on the p-values may be the same.

Requests for reprints should be sent to Daniel Bergh, Karlstad University, Centre for Research on Child and
Adolescent Mental Health, SE-651 88 Karlstad, Sweden, e-mail: daniel.bergh@kau.se.
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Introduction

Social and medical scientists sometimes rely
on p-values rather than effect sizes or descriptions
by other means (Lantz, 2013) when reporting and
interpreting statistical analyses, which is also
encouraged by journals arguing that they have
limited space. However, it also seems to be com-
mon to use large samples, following the rationale
that larger samples makes it easier to detect small
effects (Veldhuizen, Pasker-De Jong, and Atsma,
2012). The combination of using large samples
and relying solely on p-values for statistical inter-
pretation is, however, not a good idea.

Significance tests are commonly sensitive to
sample size; given that a sample is large enough
even trivial differences will turn up as significant
(Martin-Lof, 1973, 1974). Thus, there is an evi-
dent danger of drawing false conclusions based
on the combination of large samples and mechani-
cally relying on p-values as the only source of
information, a phenomenon labeled “The large
sample size fallacy” (Lantz, 2013). However, it
is important to also recognize the opposite prob-
lem, i.e., that the analyst sometimes has too small
samples, or too low power, in order to statistically
identify substantial differences.

From a Rasch measurement perspective, the
implications of “The large sample size fallacy” are
somewhat different. Statistics, for instance Chi-
square, are commonly used in order to analyze the
concordance between the data and the expected
Rasch model (Rasch, 1960). Thus, when using a
large sample size, the parameters will be estimated
with great precision, which further means that
even very small differences between the expected
Rasch model and the observed data will be readily
exposed, and consequently, no items are likely
to fit the model (Andrich, 1988). Put differently,
when applying a large sample, the power to detect
misfit is so great that even if observed and ex-
pected values are very close, all items will misfit
(Andrich, Sheridan, and Luo, 2009). Therefore,
using a large sample and mechanically relying on
traditional fit statistics, will almost automatically
discard any model tested.

In this study the concordance between
observed data and the expected Rasch model is
analysed by means of the Rasch model for ordered
response categories, also called the polytomous
Rasch model. The Rasch model for ordered
response categories (Andrich, 1978; Wright and
Masters, 1982) takes the general form:

=Ty =T~ Tyt x(3,—6;)

Pr {'xni = X} = m,-e : (1)

— T~ Taie T+ (6,~6;)

x'=0

Thus, in the polytomous case a central
concept is threshold. Given a situation with five
response categories (0, 1, 2, 3, 4), a threshold
specifies the point at which the probability for
choosing one of two answers is equal, for instance
an answer of 0 or 1. In the equation above the
threshold parameter is denoted by T and the item
score by x in the numerator. Given that there is
concordance between the expected Rasch model
and the data, the item discriminations are the
same, as is illustrated in Figure 1.

For illustrative purposes only, Table 1 shows
an analysis based on simulations of perfect cir-
cumstances using different sample sizes, with
10 repetitions at each sample size (10 items in
10 class intervals (df = 90). The values in Table
1 are Chi-square values with their probabilities
reflecting the statistical concordance between the
expected polytomous Rasch model and the data.

Thus, using a sample larger than 5,000 in-
dividuals would reveal significant results also in
perfect circumstances.

A suggested strategy has therefore been to
combine statistical analysis of fit with descriptive,
graphical analysis (Andrich, 1988). In Figure 2
an example of that sort of analysis is provided by
means of an item characteristic curve (ICC), for
the worst fitting item of simulation 1 from Table
1, using 21,000 individuals. Even though this
example constitutes the worst fitting item, the
observations are located on the according to the
Rasch model expected curve, i.e., the deviations
between observed data and the expected Rasch
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model are very small. Nevertheless, the statistical
counterpart to the ICC shows misfit for all items
applying the same sample size.

However, due to space limitations that is not
always possible—the journal format sometimes
requires a one-number solution describing model
fit. Therefore, several different approaches to
handle the sample size problem, and tangent
issues, have been discussed elsewhere (see for
instance: (Gustafsson, 1980; Tennant and Pal-
lant, 2012; Wright and Masters, 1982; Wright
and Linacre, 1994; Wright and Masters, 1990).

0009 Descriptorforbem 3 Locn=2.340 Spread=1.005 FitRes=-0334 ChiSg[Fr]=0.240

In the RUMM?2030 program (Andrich, Sheri-
dan, and Luo, 2013), a facility enabling sample
size adjustment in the statistical analysis of fit
has been implemented, implying that sample
size, all other things being equal, is adjusted in
the analysis. The Chi-square statistic for test of
fit is conducted by comparing the total score of
persons in approximately equal sized class in-
tervals, with the sum of expected values. This is
resulting in an approximate Chi-square statistic
with C-1 degrees of freedom and which is, in
accordance with Andrich and Styles (2011 PG
81), denoted by:
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Figure 1. An example of a Category Probability Curve showing the latent dichotomous

threshold characteristic curves with equal slopes.
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Figure 2. Item Characteristic Curve for the worst fitting item from simulation 1 Table 1, using 21,000

individuals.
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C
X2~
c-1i ™~
c=1 nee nee nec

Following Andrich and Styles (2011 PG 81),
the Chi-square test of fit statistic can be adjusted
to an equivalent effective sample of different size
by applying the rationale:
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The number of persons in class interval C is then
denoted by n_

Eci :ZXVli /nc’I7cz = ZV[Xni]/nc,

nec nec

and by constructing class intervals,

As the outcome of equation (3) is propor-
tional to the original sample size (N), in order to
adjust the analysis to a smaller equivalent effec-
tive sample size (), the Chi-square value obtained
using the original sample size should be multi-
plied by n/N (Andrich and Styles, 2011). Thus,
by adjusting the analysis to a smaller equivalent
effective sample size, the Chi-square test of fit
is expected to be less sensitive to sample size
(Andrich and Styles, 2011), but with the residuals
reflecting the degree of precision available in the
original sample.

The RUMM?2030 adjustment facility has
been available for long time, but still there seems
to be a lack of studies describing the empirical
operational characteristics of the function, i.e., the
empirical consequences of adjusting a sample to
a smaller effective sample size in the statistical
analysis of fit. Alternatively, a random sample

approach could be adopted in order to handle
the sample size problem. The purpose of this
study was to analyze and to compare these two
strategies as test of fit approximations, using
simulated data.

Methods

Frame of reference

The analyses conducted in accordance with
the purpose of this paper are based on simulated
data with different degrees of fit using RUMMss
simulation package (Marais and Andrich, 2012).
For illustrative purposes and as a frame of refer-
ence, simulated data of perfect concordance to
the polytomous Rasch model was simulated.
Using 10 items, and with a person mean of 0.0,
a standard deviation of 2.0, item locations were
simulated to range between —3 and 3 logits. The
first threshold was set to —3 logits and the last
threshold to 3. Item discriminations were set to
1.00 for all items. As extreme person locations
would violate the model characteristics, extreme
scores were excluded in the simulation procedure.

The simulation procedure was conducted for
different sample sizes (21,000, 15,000, 10,000,
5,000, 3,000, 1,000 and 500) and was repeated
10 times for each sample size. Total Chi-square
values were calculated for each simulation. As an
overall indicator of the level of fit, mean-square
values were calculated by the summated total Chi-
square values divided by the total df, implying an
expected value of 1 (this analysis is reported in
Table 1). Thus, this fit statistic is similar to that of
Outfit, often referred to in Winsteps contexts, but
sometimes also called the reduced Chi-squared or
the mean square weighted deviation.

Two scenarios

In addition, two scenarios were simulated.
First, a realistic situation of fitting data relatively
well targeted and with item discriminations of
1.00 across items, but allowing for extreme scores
was simulated. In the second scenario, a realistic
situation of misfitting data was simulated. Item
discriminations were then simulated to vary
substantially across items, ranging from 0.5 for
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poor discriminations to 1.5 for high discrimina-
tions. Thus the model was violated by varying the
item discriminations. In the two scenarios item
difficulties were set to range between —3.00 and
3.00 logits. Also in both of the scenarios, the es-
timated model includes 7 polytomous items (with
5 response categories) and with persons grouped
into 10 equal sized class intervals based on the
person locations of the whole sample (df = 63).
The number of items used here is analogous with
prior and ongoing work on real data not yet pub-
lished, but is also considered to be common item
compositions in social and medical sciences. The
response format implies 28 item thresholds in to-
tal, and threshold values were simulated to (—1.00,
—0.300, 0.300 and 1.00) be equal for each item.

In order to facilitate the study of trends
of Chi-square values when moving from one
sample size to a smaller, starting with an original
sample size of 21,000, the sample was adjusted
to 19,000, 15,000, 12,000, 10,000, 7,000, 5,000,
3000, 2,000, 1,000, 750, 500, 300, and 100 for
each of the two simulated scenarios, using the
RUMM2030 sample size adjustment function. By
adjusting the analysis to several different effective
sample sizes, the observation of inconsistencies
in Chi-square value trends is possible.

However, in order to qualify the analysis, the
Chi-square values obtained using the adjustment
function need to be compared to external values,
i.e., values that are obtained not using the adjust-
ment function, but values that would be expected
provided the specific sample size and level of
fit. Thus, following statistical principles, aver-
aged Chi-square values based on sets of random
samples are considered to be a good Chi-square
value approximation. Therefore, 10 random
samples with replacement were drawn for each
sample size and averaged total Chi-square values
calculated. These were then compared with the
total Chi-square values obtained using the sample
size adjustment function in the RUMM2030
software, for each of the different sample sizes,
and for each of the two scenarios. In addition,
mean-square values were calculated by dividing
the summated total Chi-square values with the
total number of df, implying an expected value

of 1. This calculation was performed for random
samples as well as adjusted samples. It should,
however, be noticed that when generating random
samples similar to the original sample in terms
of'size, the two will be highly dependent on each
other, i.e., largely containing the same individuals.

The concordance between the Rasch model
and the observed data was analysed by means
of the polytomous Rasch model, also called the
Rasch model for ordered response categories. All
analyses were conducted using the RUMM2030
software (Andrich et al., 2013).

Results

Figure 3 and Figure 4 depict the distribution
of persons relative to item thresholds in the two
simulated scenarios of relatively well-targeted
fitting and misfitting data, respectively. In the
case of fit (Figure 3) the results imply a mean of 0
and standard deviation of 2 for persons and items
respectively. The scenario of misfit, as is shown
in Figure 4, reveals a person mean of 0.1 and a
standard deviation of 1.64, and similar figures for
items (0 and 1.76 respectively).

In Table 2, the comparison between the
random sample approach and the RUMM?2030
adjustment function is displayed for fitting
data. A general pattern observable implies de-
creasing Chi-square values when moving from
one sample size to a smaller, which is true for
adjusted samples as well as random samples of
different sizes. At sample sizes of 19,000 and
15,000 the random sample/adjustment function
ratio is smaller than 1, but at all other sample
sizes the ratio is bigger than 1, i.e., the total Chi-
square value obtained using the random sample
approach is bigger than that obtained using the
RUMM2030 adjustment facility. At sample
sizes between 19,000 and 5,000, the differences
between Chi-square values obtained using the
random sample approach and the adjustment
facility approach are small (the ratio is close to
1). However, at sample sizes smaller than 5,000,
the ratio is generally and gradually increasing as
turning from one sample size to a smaller. Based
on the p-values, when using the adjustment func-
tion data start to fit the model at a sample size of
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about 2,000 individuals, while the corresponding
sample size for random samples is 1,000, which
is also reflected in the mean-square values. From
Table 2 it can also be seen that the mean-squares
are varying substantially for adjusted Chi-squares
when adjusting to sample sizes between 2,000 and
100 individuals, while they are largely constant
for random samples. However, using a sample
size of 1,000, and based on p-values, the analyst
would reach the same conclusion of whether the
data fits the model or not, regardless of which of
the two methods used. As shown in Table 3, this

SQUARED TEST oF FIT AND SAMPLE SI1ZE 7

is also confirmed at the item level, given samples
of 1,000 but not 3,000. In Table 3, it should also
be noticed that the relationship between items
for adjusted samples, i.e., the best or worst fitting
items are the same at different adjustments, but
not for random samples due to the nature of the
simulated data (well fitted = small differences) in
combination with random variation.

Applying misfitting data, the overall pattern
is the same, but less pronounced. For instance,
at sample sizes between 19,000 and 1,000 the
differences between the random sample approach
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Figure 3. Person-Item Threshold Distribution, a realistic situation with fitting data simulated.
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Figure 4. Person-Item Threshold Distribution, a realistic situation with misfitting data simulated.
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and the adjustment facility approach are small,
i.e., the ratio is close to 1, as is shown in Table 4.
According to the p-values, using the adjustment
function would reveal non-significant results with
adjustments to 750 individuals, while the corre-
sponding sample size for random samples is 300.

The two scenarios taken together

Figure 5 shows the two scenarios simultane-
ously displayed in one single graph. From Figure
5, it is evident that the two scenarios seem to work
in a similar manner given sample sizes of between
19,000 and 5,000 individuals. However, applying
fitting data, the random sample/adjusted sample
ratio increases gradually as the sample size is
adjusted to each lower level. For instance, the
ratio increase seems to be particularly pronounced
when moving between adjustments to 500 and
300 individuals. Given the situation with misfit,
the ratio increase is at its highest levels at the same
points, but is less pronounced.

Discussion

The purpose of this study was to analyze and
to compare the RUMM?2030 adjust sample size
function and a random sample approach as test
of fit approximations, using simulated data with
different degrees of fit.

The overall pattern reveals that the Chi-
square values obtained using random samples
are bigger compared to the adjusted ones. Given

6.00

5.00 *\
4.00

3.00

2.00

1.00

0.00

S P OO OO
P 5 RO Y /\@N@@&@@Q@ \9)000

sample sizes ranging between 19,000 and 5,000,
the random sample approach and the adjust
sample approach seem to work in similar manner,
i.e., the random sample/adjustment ratio is close
to 1, regardless of the nature of data used. Put
differently, given that the original (N = 21,000)
sample size is adjusted to a larger proportion than
approximately 0.24, the adjustment function and
the random sample approach seem to work simi-
larly, which is true for fitting as well as misfitting
data. Therefore, the adjust sample size function
is considered to work well as a relevant test of fit
approximation in these circumstances.

However, for adjustments to smaller samples,
the ratio increases substantially with decreasing
sample size, in particular when using fitting data.
Thus, in these circumstances the random sample/
adjustment ratio is substantially different from
1 when adjusting to a sample size equivalent
to 3,000 individuals or smaller, indicating that
the Chi-square values are not comparable. For
adjustments to each smaller sample size than ap-
proximately 14 percent of the original (equivalent
to about 3,000 individuals) the ratio increases
substantially. Thus, in these circumstances, the
RUMM2030 adjustment function is not effective
at approximating the Chi-square value for an
actual random sample of relevant size.

The differences between the results of using
the two methods may highlighted by focusing
on their respective Chi-square values and cor-

enfwmFit simulated
e \isfit simulated

Figure 5. The Random sample/adjustment function ratio at different sample

sizes. The two scenarios displayed simultaneously.
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responding p-values. For instance, using random
samples and a sample size range between 1000
and 100, reveal Chi-square values close to the
number of degrees of freedom (i.e., mean-squares
close to 1). However, the corresponding Chi-
square values for adjusted samples of equal size
are much lower (p-values approximating 1.00)
than the degrees of freedom, implying mean-
square values much lower than 1. For instance,
provided the original sample 021,000 and adjust-
ing to a size of 100 implies a mean-square value
20 times lower than the expected value of 1, the
value of a corresponding adjustment to a sample
of 300 is about 7 times. Based on these findings
it can be concluded that the adjustment of sample
sizes mechanically will exaggerate the level of fit,
and underestimate misfit, potentially leading to
spurious acceptance of data as fitting the model
when it actually misfits.

Given the characteristics of the adjustment
function, the results should not be surprising;
when applying a big sample (e.g., 21,000 indi-
viduals) the parameters are estimated with great
precision, and consequently with very small stan-
dard errors. Thus, adjusting the sample to a much
smaller effective size, the same characteristics are
applied, but in addition with much less power to
detect misfit. Consequently, there seems to be
an evident risk of reinforcing fit, in comparison
to random samples of equal size. Therefore, the
assumptions behind the adjustment function may
be considered unrealistic in that data that fits so
well with a small sample size would be hard to
find in any real situation.

Despite the diverging results between the
two methods, it is important to recognize that
the inference based on p-values may be the same
provided big reductions in sample size (to 1,000
or lower in this case). Thus, in the case of fitting
data, the conclusion would be that the data fit the
polytomous Rasch model, regardless of whether
analyst is using a random sample approach or
adjusts the sample.

Even though it may be argued that big sample
size reductions using the adjustment function will
exaggerate the actual level of fit compared to a
random sample approach, using the adjustment

will keep the item characteristics also with big
reductions, also with small differences between
items. This means that it is possible to identify
which item shows the best or worst fit. Thus, the
overall level of fit may be exaggerated, but the
relationship between the items will remain as in
the original data size. Due to random variation,
using a small number of random samples may
imply that the relationship between items will
be changed, although providing a more realistic
level of overall fit.

Using big datasets, the solution is not to avoid
Chi-square for statistical test of fit. The use of
Chi-square is widespread within the social sci-
ences, and therefore it is easily communicated to
abroad audience. Following statistical principles,
also in the statistical analysis of fit, one solution
would be to adopt both a random sample ap-
proach and to employ a sample size adjustment.
Ideally, using large samples graphical analysis
of the concordance between the expected Rasch
model and the observed data may combined with
statistical analyses of item fit in order to identify
the relationship between items. As statistical
significance tests are not meaningful using very
large data, the sample may be adjusted to a level
facilitating the analysis of item fit, but where a
random sample approach may be used in order
to estimate the actual level of fit. In that sense
the adjustment function may serve as a tool for
determining whether the random samples are
accurate or not.

Ideally, software developers will provide
solutions allowing for simultaneously generat-
ing numerous random samples and calculating
averaged tests of fit statistics, for larger numbers
of random samples, providing estimates of fit
analysis corresponding to the actual level of fit,
also at the item level.

Even if the issue is not addressed specifically
in this paper, situations where the analyst has
too small data, rather than too large, constitutes
a significant problem, causing too low power in
order to conduct realistic statistical analyses. In
these circumstances, there are few options in ma-
nipulating the data in order to facilitate statistical
analysis. Naturally the random sample approach
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would not be a solution. Nor is the adjustment
function an optimal solution. However, techni-
cally it would be possible to adjust the sample size
from a small sample to a larger effective samples
size in the statistical analysis of fit. Nevertheless,
there will be a problem with exaggerated results,
but not with fit exaggerated but misfit, causing
significant results in more cases than expected.
However, by employing smaller levels of adjust-
ments it may possible to reach an effective sample
size large enough to conduct realistic statistical
test of fit.

Conclusion

Based on the analyses presented here, the
RUMM2030 adjust sample size function works
well as a test of fit approximation, given an
original sample size of 21,000 and adjustments
to sample sizes of 5,000 individuals (equivalent
to approximately 24 percent of original size) or
more, compared to sets of random samples. How-
ever, when applying adjustments to lower sample
sizes the adjustment function is not considered
to be effective at approximating the Chi-square
value for an actual random sample of the relevant
size, as there is an evident risk of spuriously
accepting misfitting data. Nevertheless, infer-
ences based on p-values may be the same when
adjustments are conducted to lower sample size
levels. Working with large samples, the adjust-
ment function may be used as a heuristic tool in
the analysis of fit. By adjusting the sample to a
smaller effective sample it is possible to identify
the relationship between items in terms of best
and worst fitting items, while the actual level of
fit may be estimated using a random sample ap-
proach. Thus, the adjustment function may serve
as a tool in determining whether the random
samples are accurate or not.
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