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Cutoff Criteria for Fit Indexes in
Covariance Structure Analysis:
Conventional Criteria Versus

New Alternatives

Li-tze Hu
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Peter M. Bentler
Department of Psychology
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This article examines the adequacy of the "rules of thumb" conventional cutoff crite-
ria and several new alternatives for various fit indexes used to evaluate model fit in
practice. Using a 2-index presentation strategy, which includes using the maximum
likelihood (ML)-based standardized root mean squared residual (SRMR) and supple-
menting it with either Tucker-Lewis Index (TLI), Bollen's (1989) Fit Index (BL89),
Relative Noncentrality Index (RNI), Comparative Fit Index (CFI), Gamma Hat, Mc-
Donald's Centrality Index (Mc), or root mean squared error of approximation
(RMSEA), various combinations of cutoff values from selected ranges of cutoff crite-
ria for the ML-based SRMR and a given supplemental fit index were used to calculate
rejection rates for various types of true-population and misspecified models; that is,
models with misspecified factor covariance(s) and models with misspecified factor
loading(s). The results suggest that, for the ML method, a cutoff value close to .95 for
TLI, BL89, CFI, RNI, and Gamma Hat; a cutoff value close to .90 for Mc; a cutoff
value close to .08 for SRMR; and a cutoff value close to .06 for RMSEA are needed
before we can conclude that there is a relatively good fit between the hypothesized
model and the observed data. Furthermore, the 2-index presentation strategy is re-
quired to reject reasonable proportions of various types of true-population and
misspecified models. Finally, using the proposed cutoff criteria, the ML-based TLI,
Mc, and RMSEA tend to overreject true-population models at small sample size and
thus are less preferable when sample size is small.

Requests for reprints should be sent to Li-tze Hu, Department of Psychology, University of Califor-
nia, Santa Cruz, CA 95064.
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Structural equation modeling (SEM) has become a standard tool in many scientific
disciplines for investigating the plausibility of theoretical models that might ex-
plain the interrelations among a set of variables. A structural equation model repre-
sents a series of hypotheses about how the variables in the analysis are generated
and related. The application of the SEM technique thus starts with the specification
of amodel to be estimated. Consequently, the assessment of goodness of fit and the
estimation of parameters of the hypothesized model(s) are the primary goals. The
two most popular ways of evaluating model fit are those that involve the X2 good-
ness-of-fit statistics and fit indexes.

The x2 goodness-of-fit statistic assesses the magnitude of discrepancy between
the sample and fitted covariance matrices, and it is the product of the sample size
minus one and the minimum fitting function (denoted asT=(N- l)Fmn)- The T
statistic (called %2 by other researchers) has an asymptotic (large sample) %2 distri-
bution under an assumed distribution and the hypothesized model for the popula-
tion covariance matrix. The T statistics can be derived from various estimation
methods that vary in the degrees of sensitivity to the distributional assumptions,
and the one derived from maximum likelihood (ML) under the multivariate nor-
mal assumption is the most widely used summary statistic for assessing model fit
(Gierl & Mulvenon, 1995).

Another popular way of evaluating model fit is the so-called fit indexes that
have been offered to supplement the %2 test. A fit index can be used to quantify the
degree of fit along a continuum. Fit indexes can be classified into absolute and in-
cremental fit indexes (Bollen, 1989; Gerbing & Anderson, 1993; Hu & Bentler,
1995; Marsh, Balla, & McDonald, 1988; Tanaka, 1993). An absolute fit index as-
sesses how well an a priori model reproduces the sample data. No reference model
is used to assess the amount of increment in model fit, but an implicit or explicit
comparison may be made to a saturated model that exactly reproduces the sample
covariance matrix. Examples of absolute fit indexes include the Goodness-of-Fit
Index (GFI) and the Adjusted Goodness-of-Fit Index (AGFI; Bentler, 1983;
Joreskog & Sorbom, 1984; Tanaka & Huba, 1985), Steiger's (1989) Gamma Hat, a
rescaled version of Akaike's information criterion (CAK; Cudeck & Browne,
1933), a cross-validation index (CK: Browne & Cudeck, 1989), McDonald's
(1989) Centrality Index (Me), Hoelter's (1983) Critical N (CN), a standardized
version of Joreskog and Sorbom's (1981) root mean squared residual (SRMR;
Bentler, 1995), and the root mean square error of approximation (RMSEA; Steiger
& Lind, 1980). In contrast, an incremental fit index measures the proportionate im-
provement in fit by comparing a target model with a more restricted, nested base-
line model. A null model in which all the observed variables are uncorrelated is the
most typically used baseline model (Bentler & Bonett, 1980), although other base-
line, models have been suggested (e.g., Sobel & Bohrnstedt, 1985). Examples of
incremental fit indexes include the Normed Fit Index (NFI; Bentler & Bonett,
1980), a fit index by Bollen (BL86; 1986), the Tucker-Lewis Index (TLI; 1973),
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an index developed by Bollen (BL89; 1989), Bender's (1989, 1990) and McDon-
ald and Marsh's (1990) Relative Noncentrality Index (RNI), and Bender's Com-
parative Fit Index (CFI). See Table 1 for some of the formulas.

As noted by Bentler and Bonett (1980), fit indexes were designed to avoid some
of the problems of sample size and distributional misspecification associated with
the conventional overall test of fit (the %2 statistic) in the evaluation of a model. How-
ever, this promising claim that fit indexes would more unambiguously point to
model adequacy as compared to the %2 test has little empirical support. Thus, two
pressing issues that are relevant to proper applications of fit indexes for model evalu-

Formula

TABLE 1
Formulas and Descriptions for Incremental and Absolute Fit Indexes

Description

Incremental fit indexes
TLI (or NNFI) = [(J*ldfB) - {TJdBVKTJdfc) - 1]

BL89 (or IFI) = (rB - TT)/(.TB - dfi)

RNI = [(71, - <//„) - (TT - dfy)]/(TB - dfB)

CFI = I - max[(7V - dfT), 0]/max[(rT - dfT), (TB - dfB), 0]

Absolute Fit Indexes
Gamma Hat =pl[p + 2[{TT - dfT)/(N - 1)])

Me = expH/2[(rT-d/T)/(/V- 1)]}

j
SRMR =

RMSEA = JPD I dfT, where Fo = max[(TT - dh)l(N - 1), 0]

Nonnormed (can fall outside the
0-1 range). Compensates for
the effect of model
complexity.

Nonnormed. Compensates for
the effect of model
complexity.

Nonnormed. Noncentrality-
based.

Normed (has a 0-1 range).
Noncentrality-based.

Has a known distribution.
Noncentrality-based.

Noncentrality-based. Typically
has the 0-1 range (but it may
exceed 1).

Standardized root mean squared
residual.

Has a known distribution.
Compensates for the effect of
model complexity.
Noncentrality-based.

Note. TT = T statistic for the target model; dfr = df for the target model; TB = T statistic for the
baseline model; dfB = df for the baseline model; p = number of observed variables; Sy = observed
covariances; a,j = reproduced covariances; sa and s^ are the observed standard deviations; TLI =
Tucker-Lewis Index; NNFI = Nonnormed Fit Index; BL89 = Bollen's Fit Index (1989); IFI =
Incremental Fit Index; RNI = Relative Noncentrality Index; CFI = Comparative Fit Index; Me =
McDonald's Centrality Index; SRMR = standardized root mean squared residual; RMSEA = root mean
squared error of approximation.
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ation have become the primary concern of many researchers. The first pressing issue
is determination of adequacy of fit indexes under various data and model conditions
often encountered in practice. These conditions include sensitivity of fit index to
model misspecification, small sample bias, estimation method effect, effects of vio-
lation of normality and independence, and bias of fit indexes resulting from model
complexity. The second pressing issue is the selection of the "rules of thumb" con-
ventional cutoff criteria for given fit indexes used to evaluate model fit.

Although the first issue has been addressed by many researchers (e.g., Akaike,
1987; Ding, Velicer, & Harlow, 1995; Hu & Bentler, in press; James, Mulaik, &
Brett, 1982; La Du & Tanaka, 1989; Marsh & Balla, 1994; Marsh, Balla, & Hau,
1996; Steiger&Lind, 1980; Sugawara&MacCallum, 1993;Tanaka, 1987),thesec-
ond issue has rarely been studied empirically (e.g., Marsh & Hau, 1996). Conse-
quently, researchers often question the adequacy of these conventional cutoff
criteria due to the lack of empirical evidence and compelling rationale for these rules
of thumb. For example, Marsh (1995) suggested that although researchers typically
interpret values greater than .90 as acceptable for incremental fit indexes (e.g., RNI),
no compelling rationale for this rule of thumb has been provided. Mulaik recently
suggested raising the rule of thumb minimum standard for the CFI from .90 to .95 to
reduce the number of severely misspecified models that are considered acceptable
based on the .90 criterion (e.g., Carlson & Mulaik, 1993; cf. Rigdon, 1996). Using
data simulated from a known population simplex model (i.e., a model in which the
same latent construct is evaluated with the same three indicators on each of three oc-
casions), Marsh and Hau (1996) evaluated the behavior of a wide variety of indexes
of fit and decision rules based on these indexes in comparing parsimonious and
nonparsimonious (with correlated uniqueness) simplex models. Their results re-
vealed that decision rules such as RMSEA < .05, NFI (Relative Fit Index [RFI],
Nonnormed Fit Index [NNFI], Incremental Fit Index [IFI], RNI, CFI, or GFI) > .90,
and parsimony indexes > .80 may be useful in some solutions but they often lead to
inappropriate decisions in other solutions (e.g., decision rules forthe acceptability of
th« parsimonious model often lead to inappropriate decisions), and should be con-
sidered only as rules of thumb. In addition, decision rules based on the comparison of
the parsimonious and nonparsimonious models were more likely to result in the ap-
propriate acceptance of the nonparsimonious model.

This discussion undoubtedly points to the need for identifying adequate rule of
thumb cutoff criteria for fit indexes used to evaluate goodness of fit of hypothe-
sized models. In this study, we evaluate the adequacy of the rules of thumb con-
ventional cutoff criteria and other alternative criteria for various fit indexes.
Although other decision rules (e.g., the selection of either the largest or smallest
values for fit indexes incorporating parsimony or estimation penalties) have been
proposed for fit indexes used to compare the fit of competing (i.e., nested) models
(e.g., Marsh & Hau, 1996), our study only evaluates cutoff criteria under a priori
models.
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DEALING WITH A PRESSING ISSUE IN
ASSESSING FIT BY FIT INDEXES

Hu and Bentler (in press) evaluated the sensitivity of various types of incremen-
tal fit indexes and absolute fit indexes derived from ML, generalized least
squares (GLS), and asymptotically distribution-free (ADF) estimators to
underparameterized model misspecification. They also examined adequacy of
these indexes when (a) distributional, (b) assumed independence, and (c) asymp-
totic sample size requirements were violated. Their results include the following.
First, most of the ML-based fit indexes outperform those obtained from GLS
and ADF, and should be preferred indicators for evaluating model fit. Second,
NFI, BL86, CAK, CK, CN, GFI, and AGFI performed poorly and are not rec-
ommended for evaluating model fit. Third, the ML-based SRMR is the most
sensitive index to models with misspecified factor covariance(s) or latent struc-
ture^), and the ML-based TLI, BL89, RNI, CFI, Gamma Hat, Me, and RMSEA
are the most sensitive indexes to models with misspecified factor loadings.
Fourth, on the basis of a correlation matrix among the ML-based fit indexes ob-
tained to determine which fit indexes might behave similarly along three major
dimensions (sample size, distribution, and model misspecification), two major
clusters of correlated fit indexes were identified. NFI, BL86, GFI, AGFI, CAK,
and CK were clustered with high correlations. Another cluster of high
intercorrelations included TLI, BL89, RNI, CFI, Me, and RMSEA. SRMR per-
formed least similarly to the other ML-based fit indexes. A series of analyses of
variance using sample size, distribution, and model misspecification as inde-
pendent variables lend further support to the behavioral pattern of these indexes
identified from the correlation matrix. The findings suggested that there was
variation of performance among the recommended fit indexes, and thus a
two-index presentation strategy that includes using the ML-based SRMR, and
supplementing it with the ML-based TLI, BL89, RNI, CFI, Gamma Hat, Me, or
RMSEA was proposed to distinguish good models from poor ones that include
models with misspecified factor covariance(s), factor loading(s), or both.

Given that a researcher does use recommended fit indexes (Hu & Bentler, in
press) to evaluate a model, what rule of thumb cutoff values should be considered?
An adequate cutoff criterion for a given fit index should result in minimum Type I
error rate (i.e., the probability of rejecting the null hypothesis when it is true) and
Type II error rate (i.e., the probability of accepting the null hypothesis when it is
false). To address this pressing issue, our study evaluates the adequacy of rules of
thumb conventional cutoff criteria (e.g., Bentler, 1989; Bentler & Bonett, 1980)
and other alternative criteria for the ML-based TLI, BL89, RNI, CFI, Gamma Hat,
Me, RMSEA, and SRMR.

First, considering any model with a fit index above .9 as acceptable (e.g., Bentler,
1989; Bentler & Bonett, 1980) and any one with an index below this value as unac-
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ceptable, we evaluate the rejection rates for simple (i.e., models with misspecified
factor covariance(s)) and complex (i.e., models with misspecified factor loading(s))
true-population/misspecified models for the ML-based TLI, BL89, RNI, CFI,
CJamma Hat, and Me. A cutoff value of .05 was used for SRMR and RMSEA. Steiger
(1989), Browne and Mels (1990), and Browne and Cudeck (1993) recommended
that values of RMSEA less than .05 be considered as indicative of close fit. Browne
and Cudeck also suggested that values in the range of .05 to .08 indicate fair fit, and
that values greater than .10 indicate poor fit. MacCallum, Browne, and Sugawara
(1996) considered values in the range of .08 to. 10 to indicate mediocre fit. These pre-
li minary analyses will allow us to determine Type I error and Type II error rates un-
der rules of thumb conventional cutoff criteria for these ML-based fit indexes.
Second, based on the preliminary analyses and the two-index presentation strategy
proposed by Hu and Bentler (in press), various combinations of cutoff values from
selected ranges of cutoff values for the ML-based SRMR and a given supplemental
fit index (i.e., the ML-based TLI, BL89, RNI, CFI, Gamma Hat, Me, or RMSEA)
were used to calculate rejection rates for simple and complex
true-population/misspecified models. For example, rejection rates for different
types of models were calculated by the combinational rule of SRMR > .08 and
RMSEA>.05,SRMR>.08andRMSEA>.06,SRMR>.08andCFI<.95,orSRMR
> .08 and CFI < .96. First, we compare the performance of the rules of thumb conven-
tional and several new alternative cutoff values for the ML-based TLI, BL89, RNI,
CH, Gamma Hat, Me, SRMR, and RMSEA. The adequacy of our proposed combi-
national rules is then evaluated by comparing (a) Type I and Type II error rates for
simple and complex true-population models and misspecified models (I and II) and
(b) the sums and average values of sums of Type I and Type II error rates for simple
and complex true-population models and misspecified models (I).

METHOD

Study Design

Two types of models (called simple and complex here) are used to generate mea-
sured variables under various conditions on the common factors and unique vari-
ate s (cf. Hu & Bentler, in press). Simple and complex models are both confirmatory
factor-analytic models based on 15 observed variables with three common factors.
The factor-loading matrix (transposed) L' for the simple model has the following
structure:

.70 .70 .75 .80 .80 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00

.00 .00 .00 .00 .00 .70 .70 .75 .80 .80 .00 .00 .00 .00 .00

.00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .70 .70 .75 .80 .80
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The structure of the factor-loading matrix (transposed) L' for the complex model is
the following:

'.70 .70 .75 .80 .80 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00

.00 .00 .00 .70 .00 .70 .70 .75 .80 .80 .00 .00 .00 .00 .00

.70 .00 .00 .00 .00 .00 .00 .00 .70 .00 .70 .70 .75 .80 .80

For both simple and complex true-population models, variances of the factors are
1.0, and the covariances among the three factors are 0.30 (between Factors 2 and 3),
0.40 (between Factors 1 and 3), and 0.50 (between Factors 1 and 2). The unique
variances are taken as values that would yield unit-variance measured variables un-
der normality for the simple true-population model. For the complex
true-population model, the unique variances are taken as values that would yield
unit-variance for most measured variables (except for the first, fourth, and ninth ob-
served variables in the model) under normality. The unique variances for the first,
fourth, and ninth observed variables are .51, .36, and .36, respectively. In estima-
tion, the factor loading of the last indicator of each factor is fixed for identification
at 0.80, and the remaining nonzero parameters are free to be estimated.

Two hundred replications (samples) of a given sample size are drawn from a
known population model in each of the seven conditions as defined by Hu, Bentler,
and Kano (1992; also Hu & Bentler, in press). The first was a nominal condition in-
volving normality, the next three involved nonnormal variables that were inde-
pendently distributed when uncorrelated, and the final three conditions involved
nonnormal variables that, although uncorrelated, remained dependent.1 Condi-
tions are as follows:

1The theoretical basis for the generation of the seven conditions used in this study includes the fol-
lowing. Estimation methods such as maximum likelihood (ML) and generalized least squares (GLS) in
covariance structure analysis are traditionally developed under the multivariate normality assumptions
(e.g., Bollen, 1989; Browne, 1974; Jöreskog, 1969). A violation of the multivariate normality assump-
tion can seriously invalidate normal-theory test statistics. The recent development of a theory for the as-
ymptotic robustness of normal-theory methods offers hope for the appropriate use of normal-theory
methods even under violation of the normality assumption (e.g., Amemiya & Anderson, 1990; Ander-
son & Amemiya, 1988; Browne, 1987; Browne & Shapiro, 1988; Mooijaart & Bentler, 1991;Satorra&
Bentler, 1990, 1991). The purpose of this line of research is to determine under what conditions nor-
mal-theory-based methods such as ML or GLS can still correctly describe and evaluate a model with
nonnormally distributed variables. The conditions are very technical, but require the strong condition
that the latent variables (common factors, unique factors, or error) that are typically considered as simply
uncorrelated must actually be mutually independent, and common factors, when correlated, must have
freely estimated variance/covariance parameters. Normally distributed variables that are uncorrelated
are also independent, but this is not true of nonnormal variables. For a more technical review of each
method, readers are encourage to consult Hu et al. (1992), Bentler and Dudgeon (1996), or, especially,
the original sources.
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1. The factors and errors and hence measured variables are multivariate nor-
mally distributed.

2. Nonnormal factors and errors, when uncorrelated, are independent, but as-
ymptotic robustness theory does not hold because the covariances of com-
mon factors are not free parameters.

3. Nonnormal factors and errors that are independent but not multivariate nor-
mally distributed.

4. The errors and hence the measured variables are not multivariate normally
distributed.

5. An elliptical distribution in which factors and errors are uncorrelated but
dependent on each other.

6. The errors and hence the measured variables are not multivariate normally
distributed and both factors and errors are uncorrelated but dependent on
each other.

7. Nonnormal factors and errors that are uncorrelated but dependent on each
other.

These seven conditions are created through various distributional specifications on
the common and (unique) error factors. In Condition 1, both common and error fac-
tois are normally distributed, with no excess kurtosis. The true kurtoses for the
nonnormal common factors in Conditions 2 and 3 are —1.0, 2.0, and 5.0. The true
kurtoses of the unique variates for Conditions 2 through 4, in which the errors are
nonnormal, are-1.0,0.5,2.5,4.5,6.5, -1.0,1.0,3.0,5.0,7.0,-0.5,1.5,3.5,5.5, and
7.5. In Conditions 5 through 7, the factors and error variates are divided by a ran-
dom variable z = [%2 (5)1 / v3 that is distributed independently of the original

common and unique factors. As a consequence of this division, the factors and er-
rors are uncorrelated but dependent on each other. Because of the dependence, as-
ymptotic robustness of normal-theory statistics is not to be expected under Condi-
tions 5 through 7. Using modified simulation procedures in EQS (Bentler & Wu,
1995a) and SAS programs2 (SAS, 1993), the various fit indexes based on ML
method are computed in each sample.

Model Specification and Procedure

For each type of model (i.e., simple or complex), one true-population model and
two misspecified models are used to examine the adequacy of rules of thumb con-
ventional and several new alternative cutoff values for fit indexes used for model
evaluation.

2BL89, Relative Noncentrality Index, Gamma Hat, McDonald's Centrality Index, and root mean
squansd error of approximation were computed by SAS programs.
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True-population model. For the true-population model, the adequacy of
conventional cutoff criteria for the ML-based fit indexes are examined. A sample of
size N was drawn from the population and the model was estimated in that sample.
The results were saved, and the process was repeated for 200 replications. This pro-
cess was repeated for sample sizes N = 150,250,500,1,000,2,500, and 5,000. In
all, there were 7 x 6 x 200 (Conditions x Sample Sizes x Replications)=8,400 sam-
ples. The fit indexes based on ML method were calculated for each of these sam-
ples. This procedure was conducted for simple and complex models separately.

Misspecified models. Although both underparameterized and over-
parameterized models have been considered as incorrectly specified models, our
study only examines the adequacy of conventional cutoff criteria for fit indexes de-
rived from underparameterized models, because overparameterized models have
zero population noncentrality (e.g., MacCallum et al., 1996; Satorra & Saris, 1985).
For a simple model, the covariances among the three factors in the correctly specified
population model (true-population model) are nonzeros. The covariance between
Factors 1 and 2 was fixed to zero for the first misspecified model (simple
misspecified model 1). The covariances between Factors 1 and 2 and between Fac-
tors 1 and 3 were fixed to zeros for the second misspecified model (simple
misspecified model 2). For a complex model, three observed variables loaded on two
factors in the true-population model: (a) the first observed variable loaded on Factors
1 and 3, (b) the fourth observed variable loaded on Factors 1 and 2, and (c) the ninth
observed variable loaded on Factors 2 and 3. In the first misspecified model (complex
misspecified model 1), the first observed variable only loaded on Factor 1, whereas
the rest of the model specification remained the same as the complex true-population
model. In the second misspecified model (complex misspecified model 2), the first
and fourth observed variables only loaded on one single factor (both on Factor 1).

Using the design parameters specified in either the simple or complex
true-population model, a sample of size N was drawn from the population and each
of the misspecified models was estimated in that sample. The results were saved,
and the process was repeated for 200 replications. This process was repeated for
six sample sizes. For each misspecified model, there were 7 (conditions) x 6 (sam-
ple sizes) x 200 (replications) = 8,400 samples. The fit indexes based on the ML
method were calculated for each of these samples.

RESULTS

Preliminary Comparison Between Conventional and
Alternative Cutoff Values for the ML-Based Fit Indexes

The tendency for committing Type I error of the ML-based fit indexes was evalu-
ated based on the overrejection rates obtained for the simple and complex
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Irue-population models under various conditions. The tendency for committing
Type II error was evaluated based on the underrejection rates obtained for various
simple and complex misspecified models. Note that our purpose here is to evaluate
adequacy of the rules of thumb conventional cutoff values discussed earlier. These
are arbitrary in nature for various fit indexes (e.g., Bentler & Bonett, 1980; Browne
& Cudeck, 1993; MacCallum et al., 1996; Steiger, 1989).

For preliminary analyses, the original six sample sizes (TV = 150, 250, 500,
1,000,2,500, and 5,000) across Conditions 1 through 7 were further classified into
tliree categories: N < 250, N = 500, and 1,000 < N. Using various cutoff values, re-
jection rates for each of the recommended ML-based fit indexes under each type of
the simple or complex true-population and misspecified models were calculated
across seven distributional conditions and tabulated for the three sample sizes. Ta-
bles 2 and 3 display the rejection rates based on the ML-based TLI, BL89, RNI,
CFI, Gamma Hat, SRMR, and RMSEA under the selected cutoff criteria for sim-
ple and complex true-population models and misspecified models (I and II).

With a cutoff value of .90 and across three sample size categories, BL89, RNI,
and CFI only rejected 0.1% to 54.4% of all types of misspecified models, whereas
TLI rejected about 0.1% to 27.6% of all types of misspecified models, except the
complex misspecified models (II) (81.8%—97.5% were rejected by TLI). Substan-
tial Type II error rates were observed with a cutoff value of .90, and thus a cutoff
value greater than .90 is required to reject adequate proportions of misspecified
models. Using a cutoff value of .93 or .94, TLI, BL89, RNI, and CFI rejected less
than 50% of simple misspecified models (I and II) and complex misspecified mod-
els (I) in most conditions. More than 95% of the complex misspecified models (II)
were rejected by these cutoff values. With a cutoff value of .95 and N < 500, only
about 29.8% to 71.5% of simple misspecified models (I and II) were rejected, and
about 67.4% to 92.6% of complex misspecified models (I) and 99.9% to 100% of
the complex misspecified models (II) were rejected. With a cutoff value of .95 and
Nl'. 1,000, only 4.6% to 57.6% of simple misspecified models (I and II) were re-
jected, and about 56.7% to 99.4% of complex misspecified models (I) and 100% of
complex misspecified models (II) were rejected. With a cutoff value of .96, they
rejected less than 50% (except TLI) of simple misspecified models (I) in most con-
ditions, 76.3% to 99% of simple misspecified models (II), 88.5% to 99.6% of
complex misspecified models (I), and 100% of complex misspecified models (II).
With a cutoff value of .90, Gamma Hat rejected 0.1% to 12% of simple
misspecified models (I and II), 0.1 % to 14.4% of complex misspecified models (I),
and 24.6% to 57.9% of complex misspecified models (II). With a cutoff value of
.93 or .94, Gamma Hat rejected 0.1% to 40.6% of simple misspecified models (I
and II), 4.1% to 60.5% of complex misspecified models (I), and 96.3% to 100% of
complex misspecified models (II). With a cutoff value of .95, Gamma Hat rejected
2.4% to 51% of simple misspecified models (I and II) and 78.6% to 100% of com-
plex misspecified models (I and II). With a cutoff value of .96, Gamma Hat re-
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jected 8.7% to 68.4% of simple misspecified models (I and II) and 91.5% to 100%
of complex misspecified models (I and II). Note that, with a cutoff value of .95,
there was a slight tendency for TLI, BL89, RNI, CFI, and Gamma Hat to overreject
true-population models at small sample sizes (N < 250). This tendency became
more serious with a cutoff value of .96 or higher.

With a cutoff value of .90, Me rejected more than 73.7% of simple misspecified
models (I) and 91.6% to 100% of simple misspecified models (II) and complex
misspecified models (I and II). However, with a cutoff value of .90, Me substan-
tially overrejected both types of true-population models at N S 250 and slightly
overrejected these true-population models atN= 500. With cutoff values of .93,
.94, .95, and .96, Me rejected 91.7% to 100% of all types of misspecified models,
but substantial overrejection rates were also observed for simple and complex
true-population models when N < 500.

With a cutoff value of .045 or .05 and N < 250, SRMR rejected 40.5% to 67.8%
of simple and complex true-population models, and 99% to 100% of simple and
complex misspecified models. When N > 500, SRMR rejected 0.1% to 5.4% of
both types of true-population models, and 99% to 100% of simple and complex
misspecified models. With a cutoff value of .06 or .07 and N < 250, SRMR tended
to overreject both types of true-population models. SRMR rejected 100% of sim-
ple misspecified models (I and II) at all sample sizes, and it rejected 21.6% to 93%
of complex misspecified models (I) and 96.6% to 100% of complex misspecified
models (II). With a cutoff value less than .08, SRMR tended to overreject
true-population models at small sample sizes, and thus is less preferable. With a
cutoff value of .08, SRMR rejected 0% to 6.8% of both types of true-population
models across three sample size categories. It rejected 99.9% to 100% of simple
misspecified models (I and II) and 0.9% to 66.5% of complex misspecified models
(I and II). With a cutoff value of .090, SRMR rejected 0% to 3.1% of
true-population models, 99.4% to 100% of simple misspecified models (I and II),
and 0% to 38% of complex misspecified models (I and II). Substantial
underrejection rates for complex misspecified models (I and II) were observed
with a cutoff value greater than .06.

With a cutoff value of .045, .050, or .055 and N < 250, RMSEA rejected 33.4%
to 42% of both types of true-population models. RMSEA rejected 20% to 100% of
simple misspecified models (I and II), and 96.8% to 100% of complex
misspecified models (I and II). With a cutoff value of .06 and N < 250, RMSEA re-
jected about 28% of both simple and complex true-population models, 52.6% to
65.5% of simple misspecified models (I and II), and 91.6% to 100% of complex
misspecified models (I and II). With a cutoff value of .07 or .08, RMSEA substan-
tially underrejected simple misspecified models (I and II) and complex
misspecified models (I). With a cutoff value of .09 or greater, RMSEA substan-
tially underrejected all types of misspecified models. Also note that RMSEA sub-
stantially overrejected both types of true-population models at small sample sizes
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TABLE 2
Rejection Rates (%) for The ML-Based TLI, BL89, RNI, CFI, Gamma Hat, and Mo Under Various Cutoff Values

Cutoff Value

TLI
Simple

Complex

BL89
Simple

Complex

Ni
250

8.0'
19.4"
25.5C

5.2
27.6
81.8

4.8
11.7
16.5
2.4

14.0
52.9

.90

N =
500

0.7
3.4
6.6
0.2
6.6

89.1

0.2
1.2
2.0
0.2
1.1

41.9

Ni

1,000

0.0
0.1
0.2
0.0
0.2

97.5

0.0
0.1
0.1
0.0
0.1

19.2

Ni.
250

17.5
39.1
47.1
11.9
57.8
99.3

11.7
29.0
37.8
6.7

37.1
95.3

.93

N =
500

2.8
19.4
31.8

1.4
44.8

100.0

1.4
8.5

17.1
0.6

13.1
98.9

Ni

1,000

0.1
1.5
5.8
0.0

15.2
100.0

0.1
0.3
1.3
0.0
1.8

100.0

Ni
250

23.1
46.1
57.8
15.8
73.5
99.8

16.8
37.7
46.4

9.9
52.3
98.8

.94

N-
500

3.7
29.5
43.7

2.6
90.9

100.0

2.6
17.4
30.5

1.1
37.6

100.0

Ni
1,000

0.1
4.5

16.9
0.0

64.0
100.0

0.1
1.3
5.3
0.0
9.0

100.0

Ni
250

28.9
56.9
71.5
21.9
87.6

100.0

22.5
46.6
59.0
14.3
91.3
99.9

.95

N =
500

6.5
92.6
67.1
3.5

92.6
100.0

3.6
29.8
45.4

2.5
67.4

100.0

Ni
1,000

0.1
11.7
57.6
0.1

99.4
100.0

0.1
4.6

19.2
0.1

56.3
100.0

Ni
250

36.3
70.7
87.1
29.8
95.6

100.0

29.7
60.0
76.3
21.4
88.5

100.0

.96

N =
500

11.4
63.6
91.9

6.3
99.4

100.0

6.7
47.3
76.4

3.5
94.0

100.0

Ni.
1,000

0.6
47.6
99.0
0.1

99.6
100.0

0.1
16.2
83.3
0.1

99.6
100.0



RNI(orCFI)
Simple

Complex

Gamma Hat
Simple

Complex

MC

Simple

Complex

5.0
12.3
17.3
2.5

14.9
54.4

3.9
8.9

12.0
3.3

14.4
57.9

38.9
76.1
91.6
38.1
98.6

100.0

0.2
1.2
2.0
0.2
1.2

42.8

0.2
0.4
0.6
0.2
2.1

48.9

15.3
73.7
96.9
14.7
99.9

100.0

0.0
0.1
0.1
0.0
0.1

19.7

0.0
0.1
0.0
0.0
0.1

24.6

1.0
75.1
99.6

0.6
100.0
100.0

12.2
29.5
38.4
7.0

38.1
95.8

10.1
25.1
32.5
9.1

45.9
96.3

45.0
91.7
97.6
44.6
99.9

100.0

1.4
8.6

17.8
0.6

13.4
99.1

0.8
5.3

10.4
0.6

30.4
99.6

30.9
92.0
99.9
29.9

100.0
100.0

0.1
0.3
1.4
0.0
1.8

100.0

0.0
0.1
0.3
0.0
4.1

99.0

3.6
99.8

100.0
3.1

100.0
100.0

16.5
38.4
47.1
10.1
53.2
99.1

15.1
33.9
40.6
13.9
60.5
99.4

47.0
95.1
98.3
46.8
99.9

100.0

2.6
17.5
31.0

1.1
37.9

100.0

1.4
11.1
21.3

1.2
47.9

100.0

35.6
99.1

100.0
34.6

100.0
100.0

O.I
1.3
5.4
0.0
9.1

100.0

0.1
0.4
2.2
0.1

18.0
99.5

5.1
99.9

100.0
4.8

100.0
100.0

25.0
47.2
59.8
14.6
72.2
99.9

21.3
42.0
51.0
18.8
78.6
99.9

49.9
96.9
98.9
49.4
99.9

100.0

3.6
30.1
45.7

2.5
68.2

100.0

3.4
24.5
35.3
3.2

78.9
100.0

61.3
99.9

100.0
38.0

100.0
100.0

0.1
4.7

19.4
0.1

56.7
100.0

0.1
2.4
8.6
0.1

82.5
100.0

7.4
100.0
100.0

7.1
100.0
100.0

30.1
60.7
77.2
21.9
89.1

100.0

28.1
54.2
68.4
26.9
91.5

100.0

53.8
98.1
99.3
53.0

100.0
100.0

6.9
47.7
77.2
3.5

94.2
100.0

5.4
37.7
59.1
5.1

97.6
100.0

40.9
100.0
100.0
40.5

100.0
100.0

0.2
16.5
83.7
0.1

99.6
100.0

0.1
8.7

36.3
0.1

99.9
100.0

11.3
100.0
100.0

10.4
100.0
100.0

Note. TLI = Tucker-Lewis Index; BL89 = BoUen's Fit Index (1989); RNI = Relative Noncentrality Index; CFI = Comparative Fit Index; Me = McDonald's
Centrality Index.



TABLE 3
Rejection Rates (%) for ML-Based SRMR and RMSEA Under Various Cutoff Values

Cutoff
Value

SRMR
Simple

Complex

RMSEA
Simple

Complex

250

67.8*
100.0"
100.0=
54.9

100.0
100.0

42.0
84.1
95.2
41.8
99.5

100.0

.045

N =
500

11.7
100.0
100.0

8.6
100.0
100.0

23.6
87.4
99.3
23.4

100.0
100.0

1,000

0.3
100.0
100.0

0.4
100.0
100.0

1.7
97.1

100.0
1.8

100.0
100.0

Ns
250

52.5
100.0
100.0
40.5
99.5

100.0

38.5
73.6
88.9
38.1
98.5

100.0

.050

N =
500

5.2
100.0
100.0

5.4
99.0

100.0

14.0
68.1
93.6
14.8
99.9

100.0

1,000

0.1
100.0
100.0

0.2
99.5

100.0

0.8
61.2
99.3
0.6

100.0
100.0

Ns
250

38.4
100.0
99.6
28.4
98.0

100.0

34.2
62.4
77.5
33.4
96.8

100.0

.055

N =
500

3.4
100.0
100.0

3.2
93.6

100.0

8.4
49.7
77.5
7.3

99.5
100.0

1,000

0.1
100.0
100.0

0.1
88.8

100.0

0.2
20.0
83.9
0.1

100.0
100.0

250

28.0
100.0
100.0
20.6
93.0
99.9

28.0
52.6
65.5
28.3
91.6

100.0

.060

N-
500

2.1
100.0
100.0

2.2
76.4
99.8

5.4
36.4
54.0
5.4

97.7
100.0

1,000

0.1
100.0
100.0

0.1
46.6

100.0

0.1
8.2

30.6
0.1

99.8
100.0

250

20.0
100.0
100.0
14.6
80.5
98.5

18.8
37.8
44.7
17.7
72.8
99.7

.070

N =
500

1.3
100.0
100.0

1.1
52.8
96.6

2.6
17.7
28.3

2.6
67.3

100.0

1,000

0.1
100.0
100.0

0.1
21.6
98.5

0.1
1.0
4.7
0.1

58.0
99.7



Cutoff
Value

SRMR
Simple

Complex

RMSEA
Simple

Complex

N<.
250

6.8
99.9

100.0
5.6

36.5
66.5

10.4
25.1
32.0
10.3
47.9
96.6

.080

N =
500

0.3
100.0
100.0

0.4
10.6
35.4

0.8
5.3

10.0
0.9

33.1
99.8

1,000

0.0
100.0
100.0

0.0
0.9

16.5

0.0
0.1
0.3
0.0
5.6

99.0

250

3.1
99.4

100.0
2.9

19.6
38.0

6.1
14.3
19.3
6.2

30.2
82.6

.090

N =
500

0.2
100.0
100.0

0.2
2.9

14.4

0.2
1.1
2.6
0.2
7.2

87.3

1,000

0.0
100.0
100.0

0.0
0.2
6.8

0.0
0.1
0.1
0.0
0.3

94.8

250

1.3
98.4
99.9

1.6
9.6

20.5

3.3
7.4
9.9
3.3

18.4
51.2

.100

JV =

500

0.2
99.4

100.0
0.2
0.7
5.3

0.2
0.4
0.4
0.2
1.9

37.6

Nz
1,000

0.0
100.0
100.0

0.0
0.1
0.7

0.0
0.0
0.0
0.0
0.1

12.2

250

0.5
94.6
99.4
0.8
3.9
9.7

1.5
3.7
5.0
1.4
9.1

28.8

.110

N =
500

0.2
97.0

100.0
0.2
0.4
1.9

0.2
0.2
0.2
0.2
0.4

11.4

Ni
1,000

0.0
99.6

100.0
0.0
0.0
0.1

0.0
0.0
0.0
0.0
0.1
0.5

250

0.3
88.1
98.4

0.3
1.6
4.8

0.7
1.5
2.2
0.5
3.7

15.4

.120

N =
500

0.2
90.4
99.9

0.2
0.3
0.5

0.2
0.2
0.2
0.1
0.2
2.0

Ni

1,000

0.0
97.3

100.0
0.0
0.0
0.0

0.0
0.0
0.0
0.0
0.0
0.1

Note. SRMR = standardized root mean squared residual; RMSEA = root mean squared error of approximation.
"True-population model. 'Misspecified model I. cMisspecified model II.

cn
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(ff < 250) for any chosen cutoff value (including a cutoff value of .06) that can re-
ject a reasonable proportion of misspecified models.

The findings from preliminary analyses mirrored those of Hu and Bentler (in
press) that the ML-based SRMR is the most sensitive index to models with
misspecified factor covariances or latent structures, and the ML-based TLI, BL89,
RNI, CFI, Gamma Hat, Me, and RMSEA are the most sensitive indexes to models
with misspecified factor loadings. These findings suggested that combinational
rules using various combinations of cutoff values from selected ranges of cutoff
values for the ML-based SRMR and a supplemental fit index (the ML-based TLI,
BL89, RNI, CFI, Gamma Hat, Me, or RMSEA) might perform superior to a sin-
gle-index presentation strategy.

Comparisons Between the Single-Index and the Two-Index
Presentation Strategies

Hu and Bentler (1997) found that a designated cutoff value may not work equally
well with various types of fit indexes, sample sizes, estimators, or distributions. Our
preliminary analyses also revealed that sample size and violation of (asymptotic)
robustness theory influences the selection of cutoff values for the ML-based TLI,
BL89, RNI, CFI, Gamma Hat, Me, SRMR, and RMSEA. Subsequent analyses
were thus performed after reclassifying the seven conditions into a robustness con-
dition (includes Conditions 1,3, and 4) and a nonrobustness condition (includes
Conditions 2,5,6, and 7). Under the nonrobustness condition, the asymptotic ro-
bustness theory broke down either as a result of a fixed factor covariance matrix O
or dependence among latent variates. Cutoff values of .06, .07, .08, .09,. 10, and. 11
for the ML-based SRMR and cutoff values of .90, .91, .92, .93, .94, .95, and .96 for
the ML-based TLI, BL89, RNI, CFI, Me, or Gamma Hat (note that cutoff values of
.05, .06, .07, and .08 were used for RMSEA) were used to form various combina-
tional rules for model evaluation. The rejection rates for simple and complex
true-population models and misspecified models (I and II) were calculated sepa-
rately for robustness and nonrobustness conditions at sample sizes of 150,250,500,
1,000,2,500, and 5,000.

Using cutoff values of .90, .91, .92, .93, .94, .95, and .96 for TLI, BL89, RNI,
CH, or Gamma Hat in combination with SRMR < .06 (.07, .08, .09, .10, or .11),
reasonable proportions (about 94%-100%) of simple misspecified models (I and
II) were rejected. These results suggested that these combinational rules were
extremely sensitive in detecting models with misspecified factor covariance(s).
Although reasonable proportions (0%-4.2%) of simple and complex
true-population models were rejected under the robustness condition across all
sample sizes, overrejection rates of simple and complex true-population models
were observed under the nonrobustness condition for these combinational rules
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at small sample sizes (i.e., at N < 250 in most conditions and alN< 500 in some
conditions).

Using cutoff values of .90, .91, .92, .93, and .94 for TLI, BL89, RNI, CFI, or
Gamma Hat in combination with SRMR < .06 (or any of the other selected cut-
off values) at all six sample sizes, substantial underrejection rates for the com-
plex misspecified models (I) were obtained (less than 50% of misspecified
models were rejected in most conditions) under both robustness and
nonrobustness conditions. Using these combinational rules, the rejection rates
for complex misspecified models (II) were also unacceptably high in some con-
ditions. These results showed that these combinational rules resulted in substan-
tial Type II error rates (i.e., underrejection rates) for complex misspecified
models (I; and, in some cases, for complex misspecified models, II), and thus
are less preferable for model evaluation.

Only with a cutoff value of .95 or .96 for TLI (BL89, RNI, CFI, or Gamma Hat)
in combination with any of the selected cutoff values for SRMR, reasonable pro-
portions of rejection rates for simple and complex misspecified models (I and II)
were obtained in most conditions. Different cutoff values for Me (.90 and .91) and
RMSEA (.05 and .06) are required to form appropriate combinational rules with
SRMR and they are discussed separately later. The rejection rates and the sum of
Type I and Type II error rates for simple and complex true-population models and
misspecified models (I) based on these combination rules were calculated and tab-
ulated (see Appendix Tables 1-12).

Inspection of Appendix Tables 1 to 12 revealed that the magnitudes of sum of
Type I and Type II error rates under sample sizes of 150,250, and 500 are substan-
tially different from those under sample sizes of 1,000,2,500, and 5,000. Thus, av-
erage values of sums of Type I and Type II error rates for simple and complex
true-population models and misspecified models (I) were calculated across two
sets of sample sizes for each combinational rule. The first set includes sample sizes
of 150,250, and 500, and the second set includes sample sizes of 1,000,2,500, and
5,000. A similar procedure was also conducted for the single-index presentation
strategy, which used only a cutoff criterion from a single fit index. Tables 4 and 5
show average values of sums of Type I and Type II error rates for simple and com-
plex true-population models and misspecified models (I) across two sets of sample
sizes derived from the single-index and two-index presentation strategies.

Under the robustness condition, the average values (59.0% and 82.4%) of sums
of Type I and Type II error rates across sample sizes of 150,250, and 500 derived
from a single-index presentation strategy with a cutoff value of .95 for TLI were
substantially greater than those (average sums of error rates ranged from
0.8%-28.2%) derived from combinational rules (based on the two-index presenta-
tion strategy) with TLI < .95 and SRMR > .06 (.07, .08, .09,. 10, or. 11). This pat-
tern was observed for both simple and complex models (see columns 1 to 7 and
rows 1 to 4 in Table 4). Under the nonrobustness condition, the average (59.4%)
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TABLE 4
Average Value of Sums of Type I and Type II Error Rates (%) for Simple and Complex True-Population Models and

Misspecified Models (I) Across Sample Sizes of 150,250, and 500 Derived From the ML-Based Fit Indexes

Cutoff Value

TLI = 95
Simple
Complex

TLI = .96
Simple
Complex

BL89 = .95
Simple
Complex

BL89 = .96
Simple
Complex

RNI (or CFI) = .95
Simple
Complex

RNI (or CFI) = .96
Simple
Complex

N/A"

82.4 (59.4)
59.0 (32.3)

59.0(60.2)
5.8 (39.6)

93.1(61.8)
53.1 (30.9)

79.2 (56.5)
18.5 (30.0)

92.7(61.8)
51.8(30.6)

78.3 (56.8)
17.5 (30.4)

.06

0.8 (48.7)
9.9 (38.7)

1.4(52.6)
3.3 (49.0)

0.6(41.5)
18.2 (32.9)

0.8 (49.6)
9.7 (38.2)

0.9(41.9)
16.4(33.0)

0.8 (50.1)
9.4 (38.7)

.07

0.4 (43.9)
17.2 (35.3)

1.1 (54.7)
5.4 (45.5)

0.1 (35.2)
47.2 (28.8)

0.5 (44.8)
17.0 (34.6)

0.1 (35.8)
46.3 (29.0)

0.5 (45.4)
16.2 (35.2)

SRMR

.08

0.4 (40.6)
28.2(33.7)

1.1 (51.5)
5.8 (42.9)

0.1 (34.0)
52.5 (23.9)

0.5(41.6)
18.4(32.4)

0.1 (32.4)
51.3(29.3)

0.5 (42.2)
17.4 (32.9)

.09

0.6 (39.0)
18.6(33.1)

1.3 (49.9)
5.8(41.4)

0.2(30.1)
53.1 (30.0)

0.7 (40.0)
18.5(31.4)

0.2 (30.1)
53.1 (30.0)

0.7 (40.6)
17.5 (31.9)

.10

1.3(38.2)
18.6(33.0)

1.9 (48.9)
5.8 (40.8)

1.0(29.6)
53.1 (30.0)

1.4(39.2)
18.5(30.9)

1.0(12.2)
51.8 (30.5)

1.4(25.5)
17.5(31.4)

.11

4.2 (38.5)
18.6(32.7)

4.5 (49.0)
5.8(40.1)

3.9 (30.5)
54.7 (30.7)

4.1 (39.5)
18.5(30.5)

3.9(31.1)
51.8(30.4)

4.1 (40.0)
17.5 (30.9)



Gamma Hat=.95
Simple
Complex

Gamma Hat=.96
Simple
Complex

Mc=.9O
Simple
Complex

Mc=.91
Simple
Complex

RMSEA=.O5
Simple
Complex

RMSEA=.O6
Simple
Complex

96.1 (66.6)
38.8(31.9)

86.9 (60.5)
12.4 (36.4)

48.8 (60.9)
3.3 (52.3)

36.3 (63.2)
2.9 (56.3)

53.1 (62.7)
3.4(52.3)

87.7 (62.5)
11.2(35.4)

0.5 (40.5)
15.7 (24.4)

0.7 (47.3)
6.4 (45.2)

1.7(63.5)
2.6 (62.1)

2.2 (68.7)
4.3 (66.2)

1.6(62.5)
2.7 (62.2)

0.7 (47.2)
6.1 (46.9)

0.0(33.9)
34.9 (32.6)

0.3 (42.4)
11.3(41.8)

1.4(59.7)
3.3 (58.9)

2.0 (65.0)
2.9 (62.9)

1.3 (58.6)
3.4 (58.9)

0.3 (42.4)
10.2 (43.6)

0.0 (30.5)
38.5 (27.8)

0.3 (39.1)
12.3 (39.3)

1.4(56.6)
3.3 (56.1)

2.0 (62.0)
2.9 (60.2)

1.3(55.5)
3.4(56.1)

0.3 (39.0)
11.2(41.4)

0.0 (29.0)
38.8 (49.8)

0.5 (37.5)
5.6 (38.0)

1.6(55.0)
3.3 (54.5)

2.2 (60.5)
2.9 (58.5)

1.5 (53.9)
3.4(54.5)

0.5 (37.5)
11.2(40.3)

0.9 (28.4)
38.8 (32.3)

1.2(43.9)
12.4 (37.6)

2.3(54.1)
3.3 (53.2)

2.8 (59.4)
2.9 (57.8)

2.2 (52.9)
3.4 (53.9)

1.2(36.8)
11.2(40.0)

3.8 (28.8)
38.8(32.1)

4.2 (37.6)
12.4 (37.0)

4.8 (54.1)
3.3 (53.0)

5.2 (59.4)
2.9 (47.8)

4.9 (52.9)
3.4(53.1)

4.2 (37.5)
11.2(39.5)

Note. Two entries are shown under each condition. Values outside parentheses are the average values of sums of Type I and Type II error
rates derived from the robustness condition, whereas values in parentheses are the average values of sums of error rates derived from the
nonrobustness condition. SRMR = standardized root mean squared residual; TLI = Tucker-Lewis Index; BL89 = Bollen's Fit Index (1989);
RNI = Relative Noncentrality Index; CFI = Comparative Fit Index; Me = McDonald's Centrality Index; RMSEA = root mean squared error of
approximation.

*A single-index presentation strategy that does not include SRMR as a supplemental fit index.
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TABLE 5
Average Value of Sums of Type I and Type II Error Rates (%) for Simple and Complex True-Population Models and

Misspecified Models (I) Across Sample Sizes of 1,000, 2,500, and 5,000 Derived From the ML-Based Fit Indexes

Cutoff Value

TLI = .95
Simple
Complex

TLI = .96
Simple
Complex

BL89 = .95
Simple
Complex

BL89 = .96
Simple
Complex

RNI(orCFI) = .95
Simple
Complex

RNI(orCFI) = .96
Simple
Complex

N/A"

66.7 (79.9)
0.9 (0.4)

86.3 (27.9)
0.0 (0.3)

100.0(92.1)
65.7 (27.2)

99.3 (72.4)
0.9 (0.2)

100.0(91.9)
65.4(26.9)

99.2 (72.0)
0.9 (0.2)

.06

0.0 (0.2)
0.9 (0.4)

0.0(1.0)
0.0 (0.4)

0.0(0.1)
59.8(18.1)

0.0(0.3)
0.9 (0.3)

0.0(0.0)
59.6 (17.9)

0.0(0.3)
0.9 (0.3)

.07

0.0 (0.2)
0.9 (0.4)

0.0(1.0)
0.0 (0.3)

0.0(0.1)
69.0 (24.5)

0.0 (0.3)
0.9 (0.2)

0.0(0.1)
65.4 (20.9)

0.0(0.3)
0.9 (0.2)

SRMR

.08

0.0 (0.2)
0.9 (0.4)

0.0(1.0)
0.0 (0.3)

0.0(0.1)
69.0 (27.0)

0.0(0.3)
0.9 (0.2)

0.0(0.1)
65.4 (26.7)

0.0 (0.3)
0.9 (0.2)

.09

0.0 (0.2)
0.9 (0.4)

0.0(1.0)
0.0 (0.3)

0.0(0.1)
69.0 (27.2)

0.0(0.3)
0.9 (0.2)

0.0 (0.1)
65.7 (27.2)

0.0 (0.3)
0.9 (0.2)

.10

0.0 (0.2)
0.9 (0.4)

0.0(1.0)
0.0 (0.3)

0.0(0.1)
69.0(27.2)

0.0 (0.3)
0.9 (0.2)

0.0 (0.1)
65.4 (26.9)

0.0 (0.3)
0.9 (0.2)

0.0 (0.8)
0.9 (0.4)

0.1(1.5)
0.0(0.3)

0.0(0.1)
69.0(27.2)

0.1 (0.6)
0.0(0.1)

0.1 (0.8)
65.4 (26.9)

0.1 (0.8)
0.9 (0.2)



Gamma Hat = .95
Simple
Complex

Gamma Hat = .96
Simple
Complex

Me = .90
Simple
Complex

Me = .91
Simple
Complex

RMSEA = .O5
Simple
Complex

RMSEA = .06
Simple
Complex

100.0(95.9)
29.2 (8.8)

100.0(85.0)
0.2 (0.2)

50.1 (7.6)
0.0(1.1)

12.2 (3.6)
0.0(2.1)

69.3 (17.4)
0.0(1.1)

66.7 (85.8)
0.2 (0.3)

0.0(0.1)
27.9 (3.3)

0.0(0.2)
0.2 (0.3)

0.0(1.7)
0.0(1.2)

0.0(2.2)
0.0(2.2)

0.0(1.4)
0.0(1.3)

0.0(0.2)
0.2 (0.4)

0.0(0.1)
29.2 (8.2)

0.0 (0.2)
0.2 (0.2)

0.0(1.7)
0.0(1.1)

0.0(2.2)
0.0(2.1)

0.0(1.4)
0.0(1.1)

0.0(0.2)
0.2 (0.3)

0.0(0.1)
29.2 (8.6)

0.0 (0.2)
0.2 (0.2)

0.0(1.7)
0.0(1.1)

0.0(2.2)
0.0(2.1)

0.0(1.4)
0.0(1.1)

0.0 (0.2)
0.2 (0.3)

0.0 (0.1)
29.2 (8.6)

0.0 (0.2)
0.2 (0.2)

0.0(1.7)
0.0(1.1)

0.0 (2.2)
0.0(2.1)

0.0(1.4)
0.0(1.1)

0.0 (0.2)
0.2 (0.3)

0.0(0.1)
29.2 (8.6)

0.0 (0.2)
0.2 (0.2)

0.0(1.7)
0.0(1.1)

0.0 (2.2)
0.0(2.1)

0.0(1.4)
0.0(1.1)

0.0 (0.2)
0.2 (0.3)

0.1 (0.8)
29.2 (8.6)

0.1 (0.7)
0.2 (0.2)

0.1 (2.3)
0.0(1.1)

0.0 (2.7)
0.0(2.1)

0.1 (2.0)
0.0(1.1)

0.0 (0.2)
0.2 (0.3)

Note. Two entries are shown under each condition. Values outside parentheses are the average values of sums of Type I and Type II error
rates derived from the robustness condition, whereas values in parentheses are the average values of sums of error rates derived from the
nonrobustness condition. SRMR = standardized root mean squared residual; TLI = Tucker-Lewis Index; BL89 = Bollen's Fit Index (1989);
RNI = Relative Noncentrality Index; CFI=Comparative Fit Index; Me=McDonald's Centrality Index; RMSEA = root mean squared error of
approximation.

"A single-index presentation strategy that does not include SRMR as a supplemental fit index.

ro
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sums of error rates of simple models across sample sizes of 150,250, and 500 de-
rived from a single-index presentation strategy with a cutoff value of .95 for TLI
was also greater than those derived from combinational rules with TLI < .95 and
SRMR > .06 (.07, .08, .09, .10, or .11). This pattern was not observed for complex
models because the single-index and two-index presentation strategies behaved
similarly for complex models under the nonrobustness condition.

Under the robustness condition, the average (59.0%) sums of error rates for
simple and complex models derived from the single-index presentation strategy
with a cutoff value of .96 for TLI were substantially greater than those derived
from combinational rules with TLI < .96 and SRMR > .06 (.07, .08, .09, .10, or
. 11). Under the nonrobustness condition, the average values of sums of error rates
for simple and complex models derived from single-index and two-index presen-
tation strategies were similar (see Table 4).

The patterns of results derived from the single-index and two-index presenta-
tion strategies based on BL89, RNI, CFI, and Gamma Hat were similar to that de-
rived from the two presentation strategies based on TLI.

Underthe robustness condition, theaverage(48.8%forMc<.90or36.3% for Me
< .91) sums of error rates across sample sizes of 150, 250, and 500 for simple
true-population models and misspecified models (I) derived from single-index pre-
sentation strategy with Me < .90 (or .91) was substantially greater than those derived
from the two-index presentation strategy with Me < .90 (or .91) and SRMR > .06
(.07, .08, .09, .10, or .11). The single-index and two-index presentation strategies
based on Me performed similarly for complex models under the robustness condi-
tion and for both simple and complex models under the nonrobustness condition.

Under the robustness condition, the average value (53.1% for RMSEA > .05 or
87.7% for RMSEA > .06) of sums of error rates across sample sizes of 150, 250,
and 500 for simple true-population models and misspecified models (I) derived
from single-index presentation strategy with RMSEA > .05 (or .06) was substan-
tially greater than those derived from two-index presentation strategy with
RMSEA > .05 (or .06) and SRMR > .06 (.07, .08, .09, .10, or .11). The single-index
and two-index presentation strategies based on RMSEA performed similarly for
complex models under the robustness condition and for both simple and complex
models under the nonrobustness condition.

Under the robustness condition, the average values of sums of error rates for
simple and complex true-population and misspecified models (I) across sample
sizes of 1,000,2,500, and 5,000 derived from the single-index presentation strat-
egy based on TLI, BL89, RNI, CFI, Gamma Hat, or RMSEA were substantially
greater than those derived from the two-index presentation strategies based on
TLI, BL89, RNI, CFI, Gamma Hat, or RMSEA in combination with SRMR (see
Table 5). The single-index and two-index presentation strategies based on these fit
indexes performed similarly for both simple and complex models under the
nonrobustness condition. Under the robustness condition, the average values of
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sums of error rates for simple true-population models and misspecified models (I)
across sample sizes of 1,000,2,500, and 5,000 derived from the single-index pre-
sentation strategy based on Me were much greater than those derived from the
two-index presentation strategy based on Me in combination with SRMR (see Ta-
ble 5). The single-index and two-index presentation strategies based on Me per-
formed similarly for complex models under the robustness condition and for
simple and complex models under the nonrobustness condition.

In general, it can be concluded that combinational rules based on the two-index
presentation strategy committed less sums of Type I and Type II error rates than
the single-index presentation strategy, and thus are preferred criteria for model
evaluation.

Detailed Evaluation of the Proposed Combinational Rules

TLI and SRMR. With combinational rules of TLI < .95 (or .96) and SRMR >
.06 (or any of the other selected cutoff values), reasonable proportions of rejection
rates for simple and complex misspecified models (I and II) were obtained in most
conditions. Appendix Tables 1 and 2 display rejection rates and the sum of Type I
and Type II error rates for simple and complex true-population models and
misspecified models (I) based on combinational rules with TLI < .95 (or .96) and
SRMR > .06 (.07, .08, .09, .10, or .11). Although the rejection rates for simple and
complex true-population models were acceptable under the robustness conditions
(0%-4.2%), the rejection rates for simple and complex true-population models un-
der the nonrobustness condition when N< 250 were substantial (27.4%-89.1%).
Inspection of Appendix Tables 1 and 2 revealed that with combinational rules of
TLI < .96 and SRMR > .06 (or any of the other selected cutoff values) resulted in the
least sum of Type I and Type II error rates under the robustness condition across six
sample sizes. Under the nonrobustness condition, combinational rules of TLI < .95
and SRMR > .09 (or .10) resulted in the least sum of Type I and Type II error rates
when N < 500; however, combinational rules of TLI < .96 and SRMR > .06 (or any
of the other selected cutoff values) resulted in the least sum of Type I and Type II er-
ror rates when N ^ 1,000. In general (especially, under the nonrobustness condi-
tion), combinational rules of TLI < .95 and SRMR > .09 (or .10) are preferable
when N< 500, and combinational rules of TLI < .96 and SRMR > .06 (.07, .08, .09,
.10, or .11) are preferable when > 1,000.

BL89 and SRMR. With combinational rules of BL89 < .95 and SRMR > .06
(or any of the other selected cutoff values), substantial underrejection rates for
complex misspecified models (I) in most conditions were obtained (see Appendix
Table 3). The sum of Type I and Type II error rates for the complex true-population
models and misspecified models (I) was unacceptably high in every condition.



2 4 HU AND BENTLER

Type I error rates (i.e., overrejection rates) for simple and complex true-population
models were relatively high when N £ 250 under the nonrobustness condition but
were acceptable under the robustness condition across all sample sizes. With com-
binational rules of BL89 < .96 and SRMR > .06 (or any of the other selected cutoff
values), reasonable proportions of misspecified models (I and II) were rejected in
most conditions except when N < 500 (a slight underrejection rate under the robust-
ness condition were observed; see Appendix Table 4). Although Type I error rates
were acceptable under the robustness condition, substantial overrejection rates for
simple and complex true-population models (Type I error rates) at N < 250 were ob-
served under the nonrobustness condition. Inspection of Appendix Tables 3 and 4
revealed that combinational rules with BL89 < .96 and SRMR > .09 (or .10) re-
sulted in the least sum of Type I and Type II error rates, and thus are most prefera-
ble. Note that there is a trade-off between Type I and Type II error rates for any rec-
ommended combinational rule when N< 250 under the nonrobustness condition. A
given combinational rule may be more appropriate depending on which type of er-
ror rate is less desirable in one's areas of research. For example, combinational
rules with BL89 < .95 and SRMR > .09 (or. 10) may be more appropriate when N <
250 if committing Type I error is less desirable.

RNI (or CFI) and SRMR. With combinational rules of RNI (or CFI) < .95
and SRMR > .06 (or any of the other selected cutoff values), substantial
underrejection rates for complex misspecified models (I) in most conditions were
obtained (see Appendix Table 5). Type I error rates for simple and complex
true-population models were relatively high when N < 250 under the nonrobustness
condition but were acceptable under the robustness condition across six sample
sizes. With combinational rules of RNI (or CFI) < .96 and SRMR > .06 (or any of
the other selected cutoff values), reasonable proportions of misspecified models (I
and II) were rejected in most conditions except when N < 500 (a slight
underrejection rate for misspecified models [I] was observed under the robustness
condition; see Appendix Table 6). Type I error rates were acceptable under the ro-
bustness condition, but substantial overrejection rates for simple and complex
true-population models (Type I error rates) atN < 250 were observed under the
nonrobustness condition.

Inspection of Appendix Tables 5 and 6 revealed that combinational rules with
RNI (or CFI) < .96 and SRMR > .09 (or. 10) resulted in the least sum of Type I and
Type II error rates and thus are most preferable. Note that there is a trade-off be-
tween Type I and Type II error rates for any recommended combinational rule
when N < 250 under the nonrobustness condition. A given combinational rule may
be more appropriate depending on which type of error rate is less desirable in one's
area(s) of research. For example, combinational rules with RNI (or CFI) < .95 and
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SRMR > .09 (or. 10) may be more appropriate when N < 250 if committing Type I
error is less desirable.

Gamma Hat and SRMR. With combinational rules of Gamma Hat < .95
and SRMR > .06 (or any of the other selected cutoff values), substantial
underrejection rates under the robustness condition and small underrejection rates
under the nonrobustness condition for Complex misspecified models (I) were ob-
tained (see Appendix Table 7). Type I error rates for simple and complex
true-population models were relatively high when N<250 under the nonrobustness
condition but were acceptable under the robustness condition across six sample
sizes. With combinational rules of Gamma Hat < .96 and SRMR > .06 (or any of the
other selected cutoff values), reasonable proportions of misspecified models (I and
II) were rejected in most conditions except when N < 250 (a slight underrejection
rate for misspecified models [I] was observed under the robustness condition; see
Appendix Table 8). Type I error rates for simple and complex true-population mod-
els were acceptable under the robustness condition, but substantial Type I error
rates atN< 250 were obtained under the nonrobustness condition.

Inspection of Appendix Tables 7 and 8 reveals that combinational rules with
Gamma Hat < .96 and SRMR > .09 (or .10) resulted in the least sum of Type I and
Type II error rates and are most preferable for model evaluation. Note that there is
a trade-off between Type I and Type II error rates for any recommended combina-
tional rule when N < 250 under the nonrobustness condition. A given combina-
tional rule may be more appropriate depending on which type of error rate is less
desirable in one's areas of research. For example, combinational rules with
Gamma Hat < .95 and SRMR > .09 (or. 10) may be more appropriate when N < 250
if committing Type I error is less desirable.

Me and SRMR. With combinational rules of Me < .90 (or any of the other
selected cutoff values) and SRMR > .06 (or any of the other selected cutoff values),
reasonable proportions (about 95%-100%) of simple and complex misspecified
models (I and II) were rejected. These results indicated that these combinational
rules were extremely sensitive to simple and complex misspecified models.

Under the robustness condition, slight overrejection rates for simple and com-
plex true-population models (Type I error rates) were observed for combinational
rules with Me < .93 (.94 or .95) and SRMR > .06 (.07, .08, .09, .10, or .11) at N =
150, and were also observed for combinational rules with Me < .96 and SRMR >
.06 (or any of the other selected cutoff values) when N < 250. Under the
nonrobustness condition, substantial Type I error rates for simple and complex
true-population models were observed for combinational rules with Me < .93 (.94,
.95, or .96) and SRMR > .06 (or any of the other selected cutoff values) when N <
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1,000. Substantial Type I error rates for simple and complex true-population mod-
els were also observed under the nonrobustness condition for combinational rules
with Me < .90 (.91 or .92) and SRMR > .06 (or any of the selected cutoff values)
when N< 500.

These results suggested that using any of the selected combinational rules will
yield acceptable Type II error rates. However, when using combinational rules
with Me < .90 and SRMR > .09 (or. 10), the sum of Type I and Type II error rates
seemed to be minimum, and thus are preferable combinational rules (see Appendix
Tables 9 and 10). Note that when N < 250, the combinational rules with Me tended
to yield relatively large Type I error rates under both robustness and nonrobustness
conditions and thus is less preferable at small sample sizes.

RMSEA and SRMR. With combinational rules of RMSEA > .05 (.06, .07,
or .08) and SRMR > .06 (.07, .08, .09, .10, or .11), reasonable proportions
(S'4%-100%) of simple misspecified models (I and II) were rejected. These results
suggested that these combinational rules were extremely sensitive in detecting
models with misspecified factor covariance(s). Although reasonable proportions
(0%-4.7%) of simple and complex true-population models were rejected under the
robustness condition across all sample sizes, overrejection rates of simple and com-
plex true-population models (Type I error rates) were obtained under the
nonrobustness condition for RMSEA > .06 (.07 or .08) in combination with any of
the selected cutoff values for SRMR when N < 250 and for RMSEA > .05 in combi-
nation with any of the selected cutoff values for SRMR when N < 500.

With combinational rules of RMSEA > .07 (or .08) and any of the selected cut-
off values for SRMR, substantial underrejection rates (Type II error rates) of com-
plex misspecified models (I) were observed. (In most conditions, less than 50% of
complex misspecified models [I] under the robustness condition and less than 80%
of complex misspecified models [I] under the nonrobustness condition were re-
jected.) More than 90% of complex misspecified models (II) were rejected under
both robustness and nonrobustness conditions. With combinational rules of
RMSEA > .05 (or .06), acceptable proportions of rejection rates for simple and
complex misspecified models (I and II) were obtained. These results indicated that
combination rules with RMSEA > .05 (or .06) and some of the selected cutoff val-
ues; for SRMR might be preferable. Appendix Tables 11 and 12 display rejection
rates and the sum of Type I and Type II error rates for simple and complex
true-population models and misspecified models (I) based on combinational rules
with RMSEA > .05 (or .06) and SRMR > .06 (.07, .08, .09, .10, or .11). With com-
binational rules of RMSEA > .05 and SRMR > .06 (or any of the other selected cut-
off values), Type II error rates for simple and complex misspecified models were
acceptable (i.e., reasonable proportions of misspecified models were rejected) un-
der both robustness and nonrobustness conditions. Type I error rates for simple
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and complex true-population models were acceptable under the robustness condi-
tion, but were substantial when N < 500 under the nonrobustness condition. With
combinational rules of RMSEA > .06 and SRMR > .06 (or any of the other selected
cutoff values), Type II error rates for simple and complex misspecified models
were acceptable under both robustness and nonrobustness conditions. Type I error
rates for simple and complex true-population models were acceptable under the
robustness condition, but were relatively high when N < 250 under the
nonrobustness condition. Inspection of Appendix Tables 11 and 12 reveals that us-
ing combinational rules of RMSEA > .06 and SRMR > .09 (or .10) resulted in the
least sums of Type I and Type II error rates, and thus are more preferable for model
evaluation.

CONCLUSION AND RECOMMENDATION

Our preliminary analyses suggest that, for all the recommended fit indexes, except
Me (a cutoff value of .90 is recommended for the ML-based Me), a cutoff criterion
greater (or, for some fit indexes, smaller) than the conventional rule of thumb is re-
quired for model evaluation or selection. Although it is difficult to designate a spe-
cific cutoff value for each fit index because it does not work equally well with vari-
ous conditions, a cutoff value close to .95 for the ML-based TLI, BL89, CFI, RNI,
and Gamma Hat; a cutoff value close to .90 for Me; a cutoff value close to .08 for
SRMR; and a cutoff value close to .06 for RMSEA seem to result in lower Type II
error rates (with acceptable costs of Type-I error rates).

The analyses also suggested that some of our combinational rules, based on
Hu and Bender's (1997) two-index presentation strategy, were able to retain rel-
atively acceptable proportions of simple and complex true-population models
and reject reasonable proportions of various types of misspecified models in
most conditions. Specifically, our analyses revealed that substantial
underrejection rates (i.e., Type II error rates) for simple and complex
misspecified models (I; and, in some conditions, for simple and complex
misspecified models [II]) were obtained when using combinational rules with
TLI (BL89, RNI, CFI, or Gamma Hat) < .90 (.91, .92, .93, or .94) and SRMR >
.06 (.07, .08, .09, .10, or .11). These combinational rules are not recommended
for model evaluation. We recommend that practitioners use a cutoff value close
to .95 for TLI (BL89, RNI, CFI, or Gamma Hat) in combination with a cutoff
value close to .09 for SRMR to evaluate model fit. In general, a cutoff value of
.96 for TLI, BL89, RNI, CFI, or Gamma Hat in combination with SRMR > .09
(or .10) resulted in the least sum of Type I and Type II error rates. Combina-
tional rules with RMSEA > .05 (or .06) and SRMR > .06 (.07, .08, .09, .10, or
.11) resulted in acceptable Type II error rates for simple and complex
misspecified models under both robustness and nonrobustness conditions. A
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combinational rule with RMSEA > .06 and SRMR > .09 (or .10) resulted in the
least sum of Type I and Type II error rates. It should be noted that, when N <
250 and under the nonrobustness condition, there is a trade-off between Type I
and Type II error rates for any combinational rule recommended for TLI, BL89,
RNI, CFI, or Gamma Hat. Unfortunately, because the data generating process is
unknown for real data, one cannot generally know whether the robustness condi-
tion is satisfied, and thus a given combinational rule may be more appropriate
depending on which type of error rate is less desirable when sample size is
small. That is, a trade-off between Type I and Type II error rates was observed
for all recommended combinational rules when sample size is small, and thus
practitioners should choose a combinational rule that will minimize the least de-
sirable error rate in their areas of research. In addition, when N < 250, the rec-
ommended combinational rules based on BL89, RNI, CFI, or Gamma Hat in
combination with SRMR are more preferable because combinational rules based
on RMSEA (or TLI) and SRMR tended to reject more simple and complex
true-population models under the nonrobustness condition. Furthermore, using
combinational rules with Me < .90 and SRMR > .09 (or .10) yielded minimum
sum of Type I and Type II error rates. Combinational rules with Me < .90 (.91,
.92, .93, .94, .95, or .96) and SRMR < .06 (.07, .08, .09, .10, or .11) resulted in
acceptable proportions of simple and complex misspecified models (I and II) un-
der both robustness and nonrobustness conditions. However, when N < 250, any
chosen combinational rules with Me tended to yield relatively large Type I error
rates under both robustness and nonrobustness conditions, and thus are less pref-
erable at small sample sizes.

Finally, regardless of whether one's data satisfied the robustness condition, if a
combinational rule indicates that the model fit observed data well, then one can
have more confidence about the goodness of fit of the model. However, when sam-
ple size is small (N < 250), most of the combinational rules have a slight tendency
to overreject true-population models under nonrobustness condition. Thus, we
recommend that the Satorra-Bentler scaling-corrected (SCALED) test statistic be
used in conjunction with the proposed combinational rules because it works well
under various conditions, including even the nonrobustness condition (e.g.,
Curran, West, & Finch, 1996; Hu et al., 1992). Note that, relatively speaking, com-
binational rules with the ML-based TLI, Me, and RMSEA are less preferable when
sample size is small (e.g., N < 250).
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APPENDIX TABLE 1
Rejection Rates (%) and The Sum of Type I and Type II Error Rates (%) for Simple and Complex True-Population Models and

Misspecified Models (I) Based on Combinational Rules With TLI < .95 and SRMR > .06 (.07, .08, .09, .10, .11)

Cutoff Value

TLI = .95 and SRMR = .06
Simple

Complex

TLI = .95 and SRMR = .07
Simple

Complex

TLI = .95 and SRMR = .08
Simple

Complex

150

2.3" (83.0)
100.0" (100.0)

2.3' (83.0)
0.2 (70.3)

94.7 (100.0)
5.5 (70.3)

1.3(75.9)
100.0(100.0)

1.3(73.9)
0.2 (64.6)

79.5 (100.0)
20.7 (64.6)

1.3(67.8)
100.0(100.0)

1.3 (67.8)
0.2 (58.6)

75.3 (99.3)
24.9 (59.3)

250

0.0 (50.8)
100.0(100.0)

0.0 (50.8)
0.0 (37.5)

88.5(100.0)
11.7(37.5)

0.0(45.9)
100.0(100.0)

0.0 (45.9)
0.0(53.7)

82.0(99.4)
18.0(33.7)

0.0(42.6)
100.0(100.0)

0.0 (42.6)
0.0 (30.1)

82.0(97.3)
18.0(32.8)

500

0.0 (12.4)
100.0(100.0)

0.0(12.4)
0.0 (8.3)

87.5 (99.9)
12.5 (8.4)

0.0 (11.8)
100.0(100.0)

0.0(11.8)
0.0 (6.6)

87.2 (98.9)
12.8 (7.7)

0.0 (11.5)
100.0 (100.0)

0.0(11.5)
0.0 (6.4)

87.2 (97.4)
12.8 (9.0)

N

1,000

0.0(0.6)
100.0(100.0)

0.0 (0.6)
0.0 (0.8)

97.2 (99.9)
2.8(0.9)

0.0(0.6)
100.0(100.0)

0.0(0.6)
0.0(0.4)

97.2 (99.3)
2.8(1.1)

0.0(0.6)
100.0(100.0)

0.0(0.6)
0.0 (0.4)

97.2 (99.3)
2.8(1.1)

2,500

0.0 (0.0)
100.0(100.0)

0.0 (0.0)
0.0 (0.0)

100.0 (99.8)
0.0 (0.2)

0.0 (0.0)
100.0(100.0)

0.0 (0.0)
0.0 (0.0)

100.0(99.8)
0.0 (0.2)

0.0 (0.0)
100.0 (100.0)

0.0 (0.0)
0.0 (0.0)

100.0(99.8)
0.0 (0.2)

5,000

0.0 (0.0)
100.0(100.0)

0.0(0.0)
0.0 (0.0)

100.0(100.0)
0.0 (0.0)

0.0(0.0)
100.0(100.0)

0.0 (0.0)
0.0 (0.0)

100.0(100.0)
0.0(0.0)

0.0 (0.0)
100.0(100.0)

0.0 (0.0)
0.0 (0.0)

100.0(100.0)
0.0(0.0)



LI = .95 and SRMR =
Simple

Complex

TLI = .95 and SRMR =
Simple

Complex

TLI = .95 and SRMR =
Simple

Complex

1.3 (63.8)
99.5 (99.8)

1.8(64.0)
0.2 (54.8)

75.2 (97.1)
25.0 (57.7)

1.3 (61.4)
98.3 (99.5)
3.0 (61.9)
0.2 (53.0)

75.2 (95.8)
25.0 (57.2)

1.3(60.1)
94.5 (98.9)
6.8 (61.2)
0.2 (51.3)

75.2 (95.0)
25.0 (56.3)

0.0 (41.6)
100.0 (100.0)

0.0(41.6)
0.0 (28.6)

82.0(96.1)
18.0(32.5)

0.0(40.9)
99.0(100.0)

1.0(40.9)
0.0 (28.0)

82.0(95.4)
18.0(32.6)

0.0 (40.9)
95.8 (99.4)
4.2 (41.5)
0.0(27.4)

82.0(94.8)
18.0(32.6)

0.0 (11.4)
100.0(100.0)

0.0(11.4)
0.0(6.1)

87.2 (96.9)
12.8 (9.2)

0.0 (11.4)
100.0 (99.6)

0.0(11.8)
0.0(6.1)

87.2 (96.8)
12.8 (9.3)

0.0 (11.4)
98.5 (98.6)

1.5(12.8)
0.0(6.1)

87.2 (96.8)
12.8 (9.3)

0.0 (0.6)
100.0 (100.0)

0.0 (0.6)
0.0 (0.4)

97.2 (99.3)
2.8(1.1)

0.0 (0.6)
100.0(100.0)

0.0(0.6)
0.0(0.4)

97.2 (99.3)
2.8(1.1)

0.0 (0.6)
99.7 (98.5)

0.0(2.1)
0.0 (0.4)

97.2 (99.3)
2.8(1.1)

0.0 (0.0)
100.0 (100.0)

0.0 (0.0)
0.0 (0.0)

100.0 (99.8)
0.0 (0.2)

0.0 (0.0)
100.0(100.0)

0.0(0.0)
0.0(0.0)

100.0(99.8)
0.0 (0.2)

0.0 (0.0)
100.0 (99.6)

0.0 (0.4)
0.0 (0.0)

100.0 (99.8)
0.0 (0.2)

0.0 (0.0)
100.0 (100.0)

0.0 (0.0)
0.0 (0.0)

100.0 (100.0)
0.0 (0.0)

0.0(0.0)
100.0(100.0)

0.0(0.0)
0.0 (0.0)

100.0(100.0)
0.0 (0.0)

0.0 (0.0)
100.0(100.0)

0.0 (0.0)
0.0 (0.0)

100.0(100.0)
0.0 (0.0)

Note. Two entries are shown under each condition. Values outside parentheses are the sums of Type I and Type II error rates derived from the robustness
condition, whereas values in parentheses are the sums of error rates derived from the nonrobustness condition. TLI = Tucker-Lewis Index; SRMR =
standardized root mean squared residual.

"True-population model. bMisspecified model 1. cSum of Type I and Type II error rates.
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APPENDIX TABLE 2
Rejection Rates (%) and the Sum of Type I and Type II Error Rates (%) for Simple and Complex True-Population Models and Misspecified

Models (I) Based on Combinational Rules With TLI < .96 and SRMR > .06 (.07, .08, .09, .10, .11)

Cutoff Value

TLI = .96 and SRMR =.06
Simple

Complex

TLI = .96 and SRMR = .07
Simple

Complex

TLI = .96 and SRMR =.08
Simple

Complex

150

4.2'(89.1)
100.0" (100.0)

4.2C(89.1)
1.2 (SO. 1)

96.0(100.0)
5.2(80.1)

3.3 (82.9)
100.0(100.0)

3.3 (82.9)
1.2(75.0)

90.7(100.0)
10.5 (75.0)

3.3 (77.0)
100.0 (100.0)

3.3 (77.0)
1.2(69.5)

89.5 (99.5)
11.7(69.8)

250

0.0 (65.8)
100.0(100.0)

0.0 (65.8)
0.0(55.8)

95.3 (100.0)
4.7 (53.8)

0.0 (60.9)
100.0(100.0)

0.0 (60.9)
0.0 (49.4)

95.2 (99.6)
4.8 (49.8)

0.0 (57.6)
100.0(100.0)

0.0 (57.6)
0.0 (46.4)

95.2 (99.1)
4.8 (47.3)

500

0.0 (20.8)
100.0(100.0)

0.0 (20.8)
0.0 (12.9)

99.0(99.9)
0.0(13.0)

0.0 (20.3)
100.0(100.0)

0.0 (20.3)
0.0 (11.5)

99.0 (99.9)
1.0(11.6)

0.0 (20.0)
100.0 (100.0)

0.0 (20.0)

0.0 a/J)
99.0 (99.6)

1.0(11.7)

N

1,000

0.0 (2.6)
100.0 (100.0)

0.0 (2.6)
0.0(1.1)

100.0(100.0)
0.0(1.1)

0.0 (2.6)
100.0(100.0)

0.0 (2.6)
0.0(0.8)

100.0 (100.0)
0.0 (0.8)

0.0 (2.6)
100.0 (100.0)

0.0 (2.6)
0.0 (0.8)

100.0 (100.0)
0.0 (0.8)

2,500

0.0(0.4)
100.0 (100.0)

0.0 (0.4)
0.0(0.0)

100.0(100.0)
0.0 (0.0)

0.0 (0.4)
100.0 (100.0)

0.0 (0.4)
0.0 (0.0)

100.0 (100.0)
0.0 (0.0)

0.0 (0.4)
100.0 (100.0)

0.0 (0.4)
0.0(0.0)

100.0 (100.0)
0.0 (0.0)

5,000

0.0 (0.0)
100.0(100.0)

0.0 (0.0)
0.0 (0.0)

100.0 (100.0)
0.0 (0.0)

0.0 (0.0)
100.0 (100.0)

0.0 (0.0)
0.0 (0.0)

100.0 (100.0)
0.0 (0.0)

0.0 (0.0)
100.0(100.0)

0.0 (0.0)
0.0 (0.0)

100.0(100.0)
0.0 (0.0)



LI = .96andSRMR = .C
Simple

Complex

TLI = .96andSRMR = .l
Simple

Complex

TLI = .96andSRMR = .l
Simple

Complex

3.3 (73.1)
99.5 (99.8)

3.8 (73.3)
1.2(65.4)

£9.5(98.5)
11.7(66.9)

3.3 (70.8)
98.5 (99.8)
4.8(71.0)
1.2(63.6)

59.5(98.1)
11.7(65.5)

3.3 (69.5)
95.3 (99.3)

8.0 (70.2)
1.2 (61.9)

89.5 (98.0)
11.7(63.9)

0.0 (56.6)
100.0 (100.0)

0.0 (56.6)
0.0 (44.9)

95.2 (98.9)
4.8 (46.0)

0.0 (55.9)
99.0 (100.0)

1.0(55.9)
0.0 (44.3)

95.2 (98.9)
4.8 (45.4)

0.0 (55.9)
95.8 (99.6)
4.2 (56.3)
0.0 (43.6)

95.2 (98.6)
4.8 (45.0)

0.0 (79.9)
100.0 (100.0)

0.0 (19.9)
0.0 (11.0)

99.0 (99.6)
1.0(11.4)

0.0 (19.9)
100.0(100.0)

0.0(19.9)
0.0 (11.0)

99.0 (99.6)
1.0(11.4)

0.0 (19.9)
98.8 (99.5)

1.2(20.4)
1.0 (11.0)

99.0 (99.6)
1.0(11.4)

0.0 (2.6)
100.0 (100.0)

0.0 (2.6)
0.0 (0.8)

100.0 (100.0)
0.0 (0.8)

0.0 (2.6)
100.0 (100.0)

0.0(2.6)
0.0 (0.8)

100.0(100.0)
0.0 (0.8)

0.0(2.6)
99.7 (98.8)
0.3 (3.8)
0.0 (0.8)

100.0 (100.0)
0.0 (0.8)

0.0(0.4)
100.0 (100.0)

0.0(0.4)
0.0(0.0)

100.0(100.0)
0.0 (0.0)

0.0 (0.4)
100.0(100.0)

0.0(0.4)
0.0 (0.0)

100.0 (100.0)
0.0 (0.0)

0.0(0.4)
100.0(99.6)

0.0(0.8)
0.0 (0.0)

100.0 (100.0)
0.0 (0.0)

0.0 (0.0)
100.0(100.0)

0.0 (0.0)
0.0(0.0)

100.0 (100.0)
0.0 (0.0)

0.0 (0.0)
100.0 (100.0)

0.0 (0.0)
0.0 (0.0)

100.0 (100.0)
0.0 (0.0)

0.0 (0.0)
100.0 (100.0)

0.0 (0.0)
0.0 (0.0)

100.0 (100.0)
0.0 (0.0)

Note. Two entries are shown under each condition. Values outside parentheses are the sums of Type I and Type II error rates derived from the robustness
condition, whereas values in parentheses are the sums of error rates derived from the nonrobustness condition. TLI = Tucker-Lewis Index; SRMR =
standardized root mean squared residual.

'True-population model. bMisspecified model I. cSum of Type I and Type II error rates.
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APPENDIX TABLE 3
Rejection Rates (%) and the Sum of Type I and Type II Error Rates (%) for Simple and Complex True-Population Models and Misspecified

Models (I) Based on Combinational Rules With BL89 < .95 and SRMR > .06 (.07, .08, .09, .10, .11)

Cutoff Value

BL89 = .95 and SRMR = .06
Simple

Complex

BL89 = .95 and SRMR = .07
Simple

Complex

BL89 = .95 and SRMR = .08
Simple

Complex

ISO

1.7* (78.1)
100.0b (100.0)

1.7C (78.1)
0.0 (60.6)

94.0 (99.6)
6.0(61.0)

0.2 (65.3)
100.0(100.0)

0.2 (65.3)

0.0(50.-0
64.8 (99.3)
35.2(51.1)

0.2 (58.6)
100.0 (100.0)

0.2 (65.3)
0.0 (43.8)

57.5(97.9)
48.5 (45.9)

250

0.0 (38.8)
100.0(100.0)

0.0 (38.9)
0.0 (26.3)

83.8 (98.6)
16.2 (27.7)

0.0 (33.4)
100.0(100.0)

0.0 (33.4)
0.0(27.8)

50.3 (97.4)
49.7 (24.4)

0.0(30.7)
100.0(99.9)

0.0 (30.2)
0.0(78.5)

47.5(93.0)
52.2 (25.8)

N

500

0.0 (7.6)
100.0(100.0)

0.0 (7.6)
0.0 (6.6)

67.5 (96.5)
32.5(10.1)

0.0 (6.8)
100.0(100.0)

0.0 (6.8)
0.0 (5.0)

43.3 (94.0)
56.7(11.0)

0.0 (6.5)
100.0 (100.0)

0.0 (6.5)
0.0 (4.6)

43.2 (88.3)
56.8 (0.0)

1,000

0.0 (0.4)
100.0(100.0)

0.0 (0.4)
0.0 (0.8)

54.7(97.9)
45.3 (8.9)

0.0 (0.4)
100.0(100.0)

0.0 (0.4)
0.0(0.4)

41.7(87.4)
58.3 (13.0)

0.0 (0.4)
100.0 (100.0)

0.0(0.4)
0.0 (0.4)

41.7(82.9)
58.3 (17.5)

2,500

0.0 (0.0)
100.0 (100.0)

0.0 (0.0)
0.0 (0.0)

36.5(80.9)
63.5(19.1)

0.0 (0.0)
100.0(100.0)

0.0 (0.0)
0.0 (0.0)

33.0(72.8)
77.0 (27.2)

0.0 (0.0)
100.0(100.0)

0.0(0.0)
0.0 (0.0)

33.0(70.9)
77.0(29.1)

5,000

0.0 (0.0)
100.0 (100.0)

0.0 (0.0)
0.0 (0.0)

29.3 (73.8)
70.7 (26.2)

0.0 (0.0)
100.0 (100.0)

0.0 (0.0)
0.0 (0.0)

28.2 (66.8)
71.8(33.2)

0.0 (0.0)
100.0 (100.0)

0.0 (0.0)
0.0 (0.0)

28.2 (65.5)
71.8 (34.5)



BL89 = .95 and SRMR = .09
Simple

Complex

BL89 = .95andSRMR = .10
Simple

Complex

BL89 = .95andSRMR = . l l
Simple

Complex

0.2 {54.6)
99.5 (99.8)
0.7 (54.8)
0.0 (39.9)

49.8(94.3)
50.2 (45.6)

0.2 (52.5)
99.5 (99.8)

1.9 (52.9)
0.0 (38.1)

49.8(943)
50.2 (45.6)

0.2 (51.0)
94.3 (98.8)

5.9 (52.2)
0.0 (36.4)

49.8(90.8)
50.2 (45.6)

0.0 (30.1)
100.0(99.9)

0.0(29.2)
0.0 (17.3)

47.8(90.8)
52.2 (26.5)

0.0 (28.4)
100.0(99.9)

1.1 (28.9)
0.0(16.6)

47.8(89.1)
52.2 (27.5)

0.0(28.4)
95.7(98.1)
4.3 (30.3)
0.0 (MO)

47.8(88.4)
57.2 (27.6)

0.0(6.5)
100.0(100.0)

0.0(6.4)
0.0(4.4)

43.2 (86.5)
56.8(17.9)

0.0(6.4)
100.0(100.0)

0.0(7.0)
0.0(4.4)

43.2(85.9)
56.8 (18.5)

0.0(6.4)
98.5 (97.3)

1.5(9.1)
0.0(4.4)

43.2 (85.6)
56.8 (18.8)

0.0 (0.4)
100.0(100.0)

0.0(0.4)
0.0 (0.4)

41.7(82.4)
58.3 (18.0)

0.0 (0.4)
100.0(100.0)

0.0(0.4)
0.0(0.4)

41.7(82.4)
58.3 (18.0)

0.0(0.4)
99.7 (98.5)
0.3 (0.0)
0.0(0.4)

41.7(82.4)
58.3 (18.0)

0.0(0.0)
100.0(100.0)

0.0(0.0)
0.0(0.0)

33.0(70.9)
77.0(29.2)

0.0 (0.0)
100.0(100.0)

0.0(0.0)
0.0 (0.0)

33.0(70.8)
77.0 (29.2)

0.0 (0.0)
100.0(99.6)

0.0 (0.4)
0.0 (0.0)

33.0(70.8)
77.0 (29.2)

0.0(0.0)
100.0(100.0)

0.0(0.0)
0.0 (0.0)

28.2 (65.5)
71.8 (34.5)

0.0 (0.0)
100.0(100.0)

0.0 (0.0)
0.0 (0.0)

28.2 (65.5)
71.8 (34.5)

0.0 (0.0)
100.0(100.0)

0.0 (0.0)
0.0 (0.0)

28.2 (65.5)
71.8 (34.5)

Note. Two entries are shown under each condition. Values outside parentheses are the sums of Type I and Type II error rates derived from the robustness
condition, whereas values in parentheses are the sums of error rates derived from the nonrobustness condition. BL89 = Bollen's Fit Index (1989); SRMR =
standardized root mean squared residual.

"True-population model. 'Misspecified model I. cSum of Type I and Type II error rates.
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APPENDIX TABLE 4
Rejection Rates (%) and the Sum of Type I and Type II Error Rates (%) for Simple and Complex True-Population Models and

Misspecified Models (I) Based on Combinational Rules With BL89 < .96 and SRMR > .06 (.07, .08, .09, .10, .11)

Cutoff Value

BL89 = .96 and SRMR = .06
Simple

Complex

BL89 = .96 and SRMR = .07
Simple

Complex

BL89 = .96 and SRMR = .08
Simple

Complex

150

2.5" (83.8)
100.0" (100.0)

2.5° (83.8)
0.2 (69.5)

94.7 (100.0)
5.5 (69.5)

1.5 (74.8)
100.0(100.0)

1.5(74.8)
0.2 (63.8)

79.0(100.0)
21.2 (63.8)

1.5 (68.8)
100.0(100.0)

1.5 (68.8)
0.2 (57.8)

74.7(993)
25.3 (58.5)

250

0.0 (52.3)
100.0(100.0)

0.0 (52.3)
0.0 (36.6)

88.5 (100.0)
11.5(36.6)

0.0 (47.4)
100.0(100.0)

0.0 (47.4)
0.0 (32.3)

82.5(99.4)
17.5 (32.9)

0.0(44.1)
100.0(100.0)

0.0(44.1)
0.0(29.5)

82.5 (98.0)
17.5(31.3)

500

0.0(12.6)
100.0(100.0)

0.0(12.6)
0.0 (8.3)

88.0(99.9)
12.0 (8.4)

0.0(72.7)
100.0(100.0)

0.0(12.1)
0.0 (6.6)

87.7 (99.4)
12.3 (7.2)

0.0(77.9)
100.0(100.0)

0.0(11.9)
0.0 (6.4)

87.7 (99.0)
12.3 (7.4)

N

1,000

0.0(0.8)
100.0(100.0)

0.0 (0.8)
0.0 (0.8)

97.3 (100.0)
2.7 (0.8)

0.0(0.8)
100.0(100.0)

0.0(0.8)
0.0(0.4)

97.3 (99.8)
2.7 (0.6)

0.0(0.8)
100.0(100.0)

0.0 (0.8)
0.0 (0.4)

97.3 (99.8)
2.7 (0.6)

2,500

0.0 (0.0)
100.0(100.0)

0.0 (0.0)
0.0(0.0)

100.0 (100.0)
0.0 (0.0)

0.0 (0.0)
100.0(100.0)

0.0 (0.0)
0.0 (0.0)

100.0(100.0)
0.0(0.0)

0.0(0.0)
100.0(100.0)

0.0(0.0)
0.0(0.0)

100.0(100.0)
0.0 (0.0)

5,000

0.0 (0.0)
100.0(100.0)

0.0 (0.0)
0.0 (0.0)

100.0(100.0)
0.0(0.0)

0.0 (0.0)
100.0 (0.0)

0.0 (0.0)
0.0 (0.0)

100.0(100.0)
0.0 (0.0)

0.0 (0.0)
100.0(100.0)

0.0 (0.00)
0.0 (0.0)

100.0(100.0)
0.0 (0.0)



BL89 = .96 and SRMR = .09
Simple

Complex

BL89 = .96andSRMR = .10
Simple

Complex

BL89 = .96 and SRMR = .11
Simple

Complex

1.5 (64.9)
99.5 (99.8)
2.0(65.1)
0.2 (53.9)

74.5(97.5)
25.7 (56.4)

1.5 (62.5)
98.3 (99.5)

3.2 (63.0)
0.2 (52.1)

74.5(96.6)
25.7 (55.5)

1.5 (61.3)
94.8 (99.0)
6.7 (62.3)
0.2 (50.4)

74.5 (95.9)
25.7 (54.5)

0.0(43./)
100.0(100.0)

0.0(43.1)
0.0(27.5)

52.5(97.4)
17.5 (30.4)

0.0 (42.4)
99.0 (100.0)

1.0(42.4)
0.0(27./)

82.5 (97.3)
17.5 (29.8)

0.0 (42.4)
95.8(99.4)
4.2 (43.0)
0.0 (26.5)

82.5 (96.9)
17.5 (29.6)

0.0 (11.8)
100.0(100.0)

0.0(11.8)
0.0(6.1)

87.7(98.8)
12.3 (7.3)

0.0 (11.8)
100.0 (99.6)

0.0 (12.2)
0.0(6.1)

57.7(98.8)
12.3 (7.3)

0.0 (11.8)
98.5 (98.6)

1.5(13.2)
0.0(6.1)

87.7(98.8)
12.3 (7.3)

0.0(0.8)
100.0(100.0)

0.0 (0.8)
0.0 (0.4)

97.3 (99.8)
2.7 (0.6)

0.0 (0.8)
100.0 (100.0)

0.0 (0.8)
0.0 (0.4)

97.3 (99.8)
2.7 (0.6)

0.0 (0.0)
99.7 (98.5)
0.3 (1.5)
0.0 (0.0)

100.0 (99.8)
0.0(0.2)

0.0(0.0)
100.0(100.0)

0.0(0.0)
0.0 (0.0)

100.0 (100.0)
0.0 (0.0)

0.0(0.0)
100.0(100.0)

0.0(0.0)
0.0(0.0)

100.0(100.0)
0.0 (0.0)

0.0 (0.0)
100.0 (99.6)

0.0 (0.4)
0.0(0.0)

100.0(100.0)
0.0(0.0)

0.0(0.0)
100.0(100.0)

0.0 (0.0)
0.0 (0.0)

100.0 (100.0)
0.0(0.0)

0.0(0.0)
100.0(100.0)

0.0(0.0)
0.0(0.0)

100.0(100.0)
0.0(0.0)

0.0 (0.0)
100.0(100.0)

0.0 (0.0)
0.0 (0.0)

100.0(100.0)
0.0(0.0)

Note. Two entries are shown under each condition. Values outside parentheses are the sums of Type I and Type II error rates derived from the robustness
condition, whereas values in parentheses are the sums of error rates derived from the nonrobustness condition. BL89 = Bollen' s Fit Index (1989); SRMR =
standardized root mean squared residual.

'True-population model. bMisspecified model I. cSum of Type I and Type II error rates.
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APPENDIX TABLE 5
Rejection Rates (%) and the Sum of Type I and Type II Error Rates (%) for Simple and Complex True-Population Models and

Misspecified Models (I) Based on Combinational Rules With RNI (or CFI) < .95 and SRMR > .06 (.07, .08, .09, .10, .11)

Cutoff Value

RNI (or CH) = .95 and SRMR = .06
Simple

Complex

RNI (or CFI) = .95 and SRMR = .07
Simple

Complex

RNI (or CFI) = .95 and SRMR = .08
Simple

Complex

150

1.7' (78.5)
100.0" (100.0)

1.7C(78.5)
0.0 (61.1)

94.0 (99.6)
0.6(61.5)

0.2 {66.3)
100.0 (100.0)

0.2 (66.3)
0.0 (57.0)

65.5 (99.3)
34.5(51.7)

0.2 (59.6)
100.0(100.0)

0.2 (59.6)
0.0(44.4)

53.0(91.9)
47.0 (46.5)

250

0.0 (39.6)
100.0(100.0)

0.0 (39.6)
0.0 (26.6)

83.8 (9Z.Z)
16.2 (27.8)

0.0 (34.3)
100.0(100.0)

0.0 (34.3)
0.0 (22.1)

51.3 (97.5)
48.7 (24.6)

0.0 (31.0)
100.0(100.0)

0.0(31.0)
0.0 (19.1)

49.3 (93.3)
50.8 (25.8)

500

0.0(7.6)
100.0 (100.0)

0.0 (7.6)
0.0(6.6)

67.7(96.9)
32.3 (9.7)

0.0(6.8)
100.0(100.0)

0.0(6.8)
0.0 (5.0)

44.2 (94.4)
55.8 (10.6)

0.0(6.5)
100.0(100.0)

0.0(6.5)
0.0 (4.6)

44.0(88.9)
56.0(15.7)

N

1,000

0.0 (0.4)
100.0 (100.0)

0.0 (0.0)
0.0(0.8)

55.0(92.1)
45.0 (8.7)

0.0 (0.4)
100.0(100.0)

0.0 (0.4)
0.0(0.4)

42.3 (87.8)
57.7 (12.6)

0.0 (0.4)
100.0(100.0)

0.0 (0.4)
0.0 (0.4)

42.3 (83.3)
57.7 (17.1)

2,500

0.0 (0.0)
100.0(100.0)

0.0 (0.0)
0.0 (0.0)

36.7(81.0)
63.3 (19.0)

0.0 (0.0)
100.0(100.0)

0.0 (0.0)
0.0 (0.0)

33.3 (73.0)
66.7 (27.0)

0.0 (0.0)
100.0(100.0)

0.0 (0.0)
0.0 (0.0)

33.3(71.1)
66.7 (28.9)

5,000

0.0 (0.0)
100.0(100.0)

0.0(0.0)
0.0(0.0)

29.5(74.1)
70.5 (25.9)

0.0(0.0)
100.0 (100.0)

0.0(0.0)
0.0(0.0)

28.3 (67.0)
71.7 (23.0)

0.0 (0.0)
100.0(100.0)

0.0(0.0)
0.0 (0.0)

28.3 (65.9)
71.7(34.1)



RNI (or CFI) = .95 and SRMR = .09
Simple

Complex

RNI (or CFI) = .95 and SRMR = .10
Simple

Complex

RNI (or CFI) = .95 and SRMR = .11
Simple

Complex

0.2 (54.6)
99.5 (99.8)

0.7 (54.8)
0.0 (39.9)

49.8(943)
50.2 (45.6)

0.2 (53.3)
98.3 (99.4)

1.9(0.0)
0.0 (38.8)

51.5(92.5)
48.5 (46.3)

0.2 (52.0)
94.3 (98.8)

5.9 (53.2)
0.0 (37.0)

51.5(91.3)
48.5 (45.7)

0.0(29./)
100.0(99.9)

0.0 (29.2)
0.0 (17.3)

47.8(90.8)
52.2 (26.5)

0.0 (29.3)
99.0 (99.6)

1.0(29.7)
0.0 (17.0)

49.2 (89.5)
50.8 (27.5)

0.0 (29.3)
95.7 (98.3)
4.3 (31.0)
0.0(16.4)

49.2 (88.8)
50.8 (27.6)

0.0(6.4)
100.0(100.0)

0.0(6.4)
0.0(4.4)

43.2(86.5)
56.8(17.9)

0.0(6.4)
100.0(99.4)

0.0(7.0)
0.0(4.4)

44.0(86.6)
56.0(17.8)

0.0(6.4)
98.5 (97.3)

1.5(9.1)
0.0(4.4)

44.0(86.4)
56.0(17.8)

0.0(0.4)
100.0(100.0)

0.0 (0.4)
0.0 (0.4)

41.7(82.4)
58.3 (18.0)

0.0 (0.4)
100.0(100.0)

0.0 (0.4)
0.0 (0.4)

42.3 (82.8)
57.7 (17.6)

0.0 (0.4)
99.7 (98.5)

0.3 (1.9)
0.0 (0.4)

42.3 (82.8)
57.7 (17.6)

0.0(0.0)
100.0(100.0)

0.0 (0.0)
0.0 (0.0)

33.0(70.8)
67.0 (29.2)

0.0 (0.0)
100.0(100.0)

0.0(0.0)
0.0(0.0)

33.3(71.0)
66.7 (29.0)

0.0 (0.0)
100.0(99.6)

0.0 (0.4)
0.0 (0.0)

33.3 (71.0)
66.7 (29.0)

0.0 (0.0)
100.0(100.0)

0.0 (0.0)
0.0 (0.0)

2S.2 (65.5)
71.8 (34.5)

0.0 (0.0)
100.0 (100.0)

0.0 (0.0)
0.0 (0.0)

28.3 (65.9)
71.7(34.1)

0.0 (0.0)
100.0 (100.0)

0.0 (0.0)
0.0 (0.0)

28.3 (65.9)
71.7(34.1)

Note. Two entries are shown under each condition. Values outside parentheses are the sums of Type I and Type II error rates derived from the robustness
condition, whereas values in parentheses are the sums of error rates derived from the nonrobustness condition. RNI = Relative Noncentrality Index; CFI =
Comparative Fit Index; SRMR = standardized root mean squared residual.

•True-population model. bMisspecified model I. cSum of Type I and Type II error rates.



APPENDIX TABLE 6
Rejection Rates (%) and the Sum of Type I and Type II Error Rates (%) for Simple and Complex True-Population Models and

Misspecified Models (I) Based on Combinational Rules With RNI (or CFI) < .96 and SRMR > .06 (.07, .08, .09, .10, .11)

Cutoff Value

RNI (or CFI) = .96 and SRMR = .06
Simple

Complex

RNI (or CFI) = .96 and SRMR = .07
Simple

Complex

RNI (or CFI) = .96 and SRMR = . 08
Simple

Complex

150

2.5' {84.3)
100.0" (100.0)

2.5= (84.3)
0.2 (70.3)

94.7 (100.0)
5.5 (70.3)

1.5 (75.6)
100.0(100.0)

1.5(75.6)
0.2 (64.6)

80.3 (100.0)
19.9 (64.6)

1.5(69.6)
100.0(100.0)

1.5(69.6)
0.2 (58.6)

76.5(98.0)
23.7 (59.3)

250

0.0 (52.9)
100.0(100.0)

0.0 (52.9)
0.0 (37.5)

88.7(100.0)
11.3(37.5)

0.0 (48.0)
100.0(100.0)

0.0(48.0)
0.0 (33.1)

83.2 (99.4)
16.8 (33.7)

0.0 (44.8)
100.0 (100.0)

0.0 (44.8)
0.0 (30.1)

83.2 (99.4)
16.8 (32.1)

500

0.0 (13.0)
100.0(100.0)

0.0 (13.0)
0.0 (8.3)

88.5 (99.9)
11.5(8.4)

0.0 (12.5)
100.0 (100.0)

0.0 (12.5)
0.0 (6.6)

88.2 (99.4)
11.8(7.2)

0.0 (12.3)
100.0 (100.0)

0.0 (12.3)
0.0 (6.4)

88.2 (99.4)
11.8(7.4)

N

1,000

0.0 (0.9)
100.0 (100.0)

0.0 (0.9)
0.0 (0.8)

97.3 (100.0)
2.7 (0.8)

0.0 (0.9)
100.0(100.0)

0.0 (0.9)
0.0 (0.4)

97.3 (99.9)
2.7 (0.5)

0.0 (0.9)
100.0(100.0)

0.0 (0.9)
0.0 (0.4)

97.3 (99.9)
2.7 (0.5)

2,500

0.0(0.0)
100.0(100.0)

0.0 (0.0)
0.0 (0.0)

100.0(100.0)
0.0(0.0)

0.0 (0.0)
100.0(100.0)

0.0 (0.0)
0.0 (0.0)

100.0(100.0)
0.0(0.0)

0.0 (0.0)
100.0(100.0)

0.0 (0.0)
0.0 (0.0)

100.0(100.0)
0.0 (0.0)

5,000

0.0 (0.0)
100.0(100.0)

0.0 (0.0)
0.0(0.0)

100.0 (100.0)
0.0 (0.0)

0.0 (0.0)
100.0(100.0)

0.0 (0.0)
0.0 (0.0)

100.0(100.0)
0.0 (0.0)

0.0 (0.0)
100.0(100.0)

0.0 (0.0)
0.0 (0.0)

100.0(100.0)
0.0(0.0)



RNI (or CFI) = .96 and SRMR = .09
Simple

Complex

RNI (or CFI) = .96 and SRMR = .10
Simple

Complex

RNI (or CFI) = .96 and SRMR = .11
Simple

Complex

1.5 (65.8)
99.5 (99.8)
2.0(66.0)
0.2 (54.8)

76.3(97.6)
23.9 (57.2)

\.5 (63.4)
98.3 (99.5)

3.2 (63.9)
0.2 (53.0)

76.3 (96.9)
23.9 (56.1)

1.5 (62.7)
94.8 (99.0)

6.7 (63.1)
0.2 (51.3)

76.3 (96.3)
23.9 (55.0)

0.0 (43.8)
100.0(100.0)

0.0 (43.8)
0.0 (28.6)

83.2 (97.4)
16.8(31.2)

0.0 (43.0)
99.0(100.0)

1.0(0.0)
0.0 (28.0)

83.2 (97.3)
16.8 (30.7)

0.0 (45.0)
95.8 (99.4)

4.2 (43.6)
0.0 (27.4)

83.2 (96.9)
16.8(30.5)

0.0(72.7)
100.0(100.0)

0.0(12.1)
0.0(6.1)

88.2 (98.8)
11.8(7.3)

0.0(72.7)
100.0(99.6)

0.0(12.5)
0.0(6.1)

88.2 (98.8)
11.8(7.3)

0.0(72.7)
98.5 (98.8)

1.5 (13.3)
0.0 (6.1)

88.2 (98.8)
11.8(7.3)

0.0 (0.9)
100.0 (100.0)

0.0 (0.9)
0.0 (0.4)

97.3 (99.9)
2.7 (0.5)

0.0 (0.9)
100.0(100.0)

0.0(0.9)
0.0(0.4)

97.3 (99.9)
2.7 (0.5)

0.0(0.9)
99.7 (98.5)

0.3 (2.4)
0.0 (0.4)

97.3 (99.9)
2.7 (0.5)

0.0 (0.0)
100.0 (100.0)

0.0 (0.0)
0.0 (0.0)

100.0 (100.0)
0.0 (0.0)

0.0 (0.0)
100.0(100.0)

0.0 (0.0)
0.0 (0.0)

100.0(100.0)
0.0 (0.0)

0.0 (0.0)
100.0 (99.6)

0.0 (0.0)
0.0 (0.0)

100.0(100.0)
0.0 (0.0)

0.0 (0.0)
100.0(100.0)

0.0 (0.0)
0.0 (0.0)

100.0(100.0)
0.0 (0.0)

0.0 (0.0)
100.0(100.0)

0.0 (0.0)
0.0 (0.0)

100.0(100.0)
0.0 (0.0)

0.0(0.0)
100.0(100.0)

0.0 (0.0)
0.0 (0.0)

100.0(100.0)
0.0 (0.0)

Note. Two entries are shown under each condition. Values outside parentheses are the sums of Type I and Type II error rates derived from the robustness
condition, whereas values in parentheses are the sums of error rates derived from the nonrobustness condition. RNI = Relative Noncentrality Index; CFI =
Comparative Fit Index; SRMR = standardized root mean squared residual.

•True-population model. bMisspecified model I. cSum of Type I and Type II error rates.



APPENDIX TABLE 7
Rejection Rates (%) and the Sum of Type I and Type II Error Rates (%) for Simple and Complex True-Population Models and

Misspecified Models (I) Based on Combinational Rules With Gamma Hat < .95 and SRMR > .06 (.07, .08, .09, .10, .11)

Cutoff Value

Gamma Hat = .95 and SRMR = .06
Simple

Complex

Gamma Hat = .95 and SRMR = .07
Simple

Complex

Gamma Hat = .95 and SRMR = .08
Simple

Complex

150

1.5" (78.3)
100.0" (100.0)

1.5C(78.3)
0.0(67.5)

94.3 (99.9)
5.7 (32.8)

0.0 (65.0)
100.0(100.0)

0.0 (65.0)
0.0(60.7)

71.5 (99.9)
28.5 (60.2)

0.0 (58.0)
100.0 (100.0)

0.0 (58.0)
0.0(53.8)

67.2 (98.9)
37.3(54.1)

250

0.0 (35.9)
100.0(100.0)

0.0(35.9)
0.0(32.0)

85.5 (100.0)
14.5 (32.0)

0.0 (30.4)
100.0(100.0)

0.0 (30.4)
0.0 (27.4)

63.0 (98.9)
37.0(28.5)

0.0(27.7)
100.0(99.6)

0.0(27.5)
0.0 (24.4)

61.2 (95.1)
38.8(29.3)

500

0.0(7.3)
100.0 (100.0)

0.0 (7.3)
0.0 (7.8)

73.0 (99.3)
27.0(8.5)

0.0 (6.4)
100.0(100.0)

0.0(6.4)
0.0(6.1)

60.7(97.1)
39.3 (9.0)

0.0(6.1)
100.0 (100.0)

0.0(6.1)
0.0(5.9)

60.7(93.5)
39.3 (0.0)

N

1,000

0.0(0.4)
100.0(100.0)

0.0 (0.4)
0.0 (0.8)

69.8 (96.6)
30.2 (4.2)

0.0 (0.4)
100.0(100.0)

0.0 (0.4)
0.0(0.4)

65.5(93.0)
34.2 (7.4)

0.0 (0.4)
100.0 (100.0)

0.0 (0.4)
0.0 (0.4)

65.8(91.9)
34.2 (8.5)

2,500

0.0 (0.0)
100.0(100.0)

0.0 (0.0)
0.0 (0.0)

68.2 (94.3)
31.8 (5.7)

0.0 (0.0)
100.0(100.0)

0.0(0.0)
0.0(0.0)

68.2(90.9)
31.8(9.1)

0.0(0.0)
100.0(100.0)

0.0(0.0)
0.0 (0.0)

68.2(90.9)
31.8(9.1)

5,000

0.0 (0.0)
100.0(100.0)

0.0 (0.0)
0.0 (0.0)

78.3 (100.0)
21.7(0.0)

0.0 (0.0)
100.0(100.0)

0.0 (0.0)
0.0 (0.0)

78.3 (91.9)
21.7(8.1)

0.0(0.0)
100.0 (100.0)

0.0 (0.0)
0.0 (0.0)

78.3 (91.9)
21.7(8.1)



Gamma Hat = .95 and SRMR = .09
Simple

Complex

Gamma Hat = .95 and SRMR = .10
Simple

Complex

Gamma Hat = .95 and SRMR = .11
Simple

Complex

0.0 (53.9)
99.5 (99.6)
0.0 (54.3)
0.0 (49.9)

61.8 (96.0)
38.2 (53.9)

0.0 (51.4)
98.3 (99.3)

1.7(52.1)
0.0(48.7)

61.8 (94.5)
38.2 (53.6)

0.0 (50.1)
94.3 (98.5)

5.7 (51.6)
0.0 (46.4)

61.8(933)
38.2(53.1)

0.0 (26.7)
100.0(99.4)

0.0 (26.7)
0.0 (76.0)

61.2 (93.3)
38.8 (82.7)

0.0 (25.4)
99.0 (99.0)

1.0(26.4)
0.0 (22J)

67.2 (92.7)
38.8 (30.2)

0.0 (25.4)
95.7 (97.3)
4.3 (28.1)
0.0 (27.6)

67.2 (91.5)
38.8 (30.1)

0.0(6.0)
100.0(100.0)

0.0 (6.0)
0.0 (5.6)

60.7(92.8)
39.3 (12.8)

0.0 (6.0)
100.0 (99.4)

0.0(6.6)
0.0 (5.6)

60.7(92.6)
39.3 (13.0)

0.0 (6.0)
98.5 (96.9)

1.5(6.6)
0.0 (5.6)

60.7(92.5)
39.3 (13.0)

0.0(0.4)
100.0(100.0)

0.0 (0.4)
0.0 (0.4)

65.8(97.7)
34.2 (8.5)

0.0 (0.4)
100.0 (100.0)

0.0(0.4)
0.0(0.4)

65.8(97.7)
34.2 (8.5)

0.0 (0.4)
99.7 (98.4)
0.3 (2.0)
0.0 (0.4)

65.8(97.7)
34.2 (8.5)

0.0 (0.0)
100.0 (100.0)

0.0 (0.0)
0.0 (0.0)

68.2 (90.9)
31.8 (9.1)

0.0 (0.0)
100.0 (100.0)

0.0 (0.0)
0.0 (0.0)

68.2 (90.9)
31.8(9.1)

0.0 (0.0)
100.0 (99.6)

0.0 (0.4)
0.0 (0.0)

68.2 (90.9)
31.8(9.1)

0.0 (0.0)
100.0 (100.0)

0.0 (0.0)
0.0 (0.0)

78.3 (91.9)
21.7(8.1)

0.0 (0.0)
100.0 (100.0)

0.0 (0.0)
0.0

78.3 (91.9)
21.7(8.1)

0.0 (0.0)
100.0(100.0)

0.0 (0.0)
0.0 (0.0)

78.3 (91.9)
21.7(8.1)

Note. Two entries are shown under each condition. Values outside parentheses are the sums of Type I and Type II error rates derived from the robustness
condition, whereas values in parentheses are the sums of error rates derived from the nonrobustness condition. SRMR = standardized root mean squared
residual.

•True-population model. bMisspecified model I. cSum of Type I and Type II error rates.



APPENDIX TABLE 8
Rejection Rates (%) and the Sum of Type I and Type II Error Rates (%) for Simple and Complex True-Population Models and

Misspecified Models (I) Based on Combinational Rules With Gamma Hat < .96 and SRMR > .06 (.07, .08, .09, .10, .11)

Cutoff Value

Gamma Hat = .96 and SRMR = .06
Simple

Complex

Gamma Hat = .96 and SRMR = .07
Simple

Complex

Gamma Hat = .96 and SRMR = .08
Simple

Complex

150

2.2' (84.1)
100.0" (100.0)

2.2'(84.1)
0.3 (78.3)

95.0 (100.0)
5.3 (78.3)

1.0 (75.1)
100.0(100.0)

1.0(75.1)
0.3 (73.0)

83.2 (100.0)
17.1 (73.0)

1.0 (68.8)
100.0(100.0)

1.0(68.8)
0.3 (67.3)

80.2 (99.3)
20.1 (68.0)

250

0.0 (47.3)
100.0(100.0)

0.0 (47.3)
0.0 (46.4)

90.5 (100.0)
9.5 (46.4)

0.0 (42.4)
100.0(100.0)

0.0 (42.4)
0.0(42.0)

88.0 (99.4)
12.0(42.6)

0.0(39.7)
100.0 (100.0)

0.0(39.1)
0.0(39.0)

87.8 (98.4)
12.2 (40.1)

500

0.0(10.4)
100.0(100.0)

0.0 (10.4)
0.0 (10.8)

95.5 (99.9)
4.5 (10.9)

0.0(9.8)
100.0(100.0)

0.0(9.8)
0.0 (9.4)

95.3 (99.6)
4.7 (9.8)

0.0 (9.5)
100.0 (100.0)

0.0(9.5)
0.0(9./)

95.3 (99.4)
4.7 (9.7)

N

1,000

0.0 (0.5)
100.0 (100.0)

0.0 (0.5)
0.0(0.9)

99.3 (99.9)
0.7(1.0)

0.0 (0.5)
100.0(100.0)

0.0(0.5)
0.0(0.5)

100.0(99.8)
0.0 (0.7)

0.0(0.5)
100.0(100.0)

0.0(0.5)
0.0(0.5)

99.3 (99.8)
0.7 (0.7)

2,500

0.0(0.0)
100.0(100.0)

0.0(0.0)
0.0(0.0)

100.0(100.0)
0.0 (0.0)

0.0 (0.0)
100.0(100.0)

0.0(0.0)
0.0(0.0)

100.0 (100.0)
0.0 (0.0)

0.0(0.0)
100.0(100.0)

0.0 (0.0)
0.0 (0.0)

100.0(100.0)
0.0(0.0)

5,000

0.0 (0.0)
100.0(100.0)

0.0 (0.0)
0.0 (0.0)

100.0(100.0)
0.0 (0.0)

0.0 (0.0)
100.0(100.0)

0.0 (0.0)
0.0 (0.0)

100.0(100.0)
0.0(0.0)

0.0(0.0)
100.0(100.0)

0.0 (0.0)
0.0 (0.0)

100.0(100.0)
0.0(0.0)



Gamma Hat = .96 and SRMR = .09
Simple

Complex

Gamma Hat = .96 and SRMR = .10
Simple

Complex

Gamma Hat = .96 and SRMR = .11
Simple

Complex

1.0 (64.9)
99.5 (99.8)

1.5(65.1)
0.3 (63.4)

80.0 (98.0)
20.3 (65.4)

1.0(83.3)
98.3 (99.4)
2.7 (83.9)
0.3 (61.6)

80.0 (97.0)
20.3 (64.6)

1.0(67.3)
94.3 (98.8)

6.7 (62.5)
0.3 (59.9)

80.0 (96.6)
20.3 (63.3)

0.0 (38.1)
100.0(100.0)

0.0(38.1)
0.0(37.5)

87.8 (98.4)
12.2(39.1)

0.0 (37.4)
99.0 (99.6)

1.0(37.8)
0.0 (36.9)

87.8 (98.3)
12.2 (38.6)

0.0 (37.4)
95.7 (99.0)

4.3 (38.4)
0.0 (36.3)

87.8 (98.0)
12.2 (38.3)

0.0(9.4)
100.0(100.0)

0.0 (9.4)
0.0 (8.9)

95.3 (99.4)
4.7 (9.5)

O.O (9.4)

10O.0 (99.5)
0.0 (9.9)
O.O (8.9)

95.3 (99.4)
4.7 (9.5)

0.0 (9.4)
98.5 (97.6)

1.5(11.8)
0.0 (8.9)

95.3 (99.4)
4.7 (9.5)

0.0 (0.5)
100.0(100.0)

0.0 (0.5)
0.0 (0.5)

99.3 (99.8)
0.7 (0.7)

0.0 (0.5)
100.0 (100.0)

0.0 (0.5)
0.0 (0.5)

99.3 (99.8)
0.7 (0.7)

0.0 (0.5)
99.7 (98.5)

0.3 (2.0)
0.0 (0.5)

99.3 (99.8)
0.7 (0.7)

0.0 (0.0)
100.0 (100.0)

0.0 (0.0)
0.0 (0.0)

100.0 (100.0)
0.0 (0.0)

0.0 (0.0)
100.0 (100.0)

0.0 (0.0)
0.0 (0.0)

100.0 (100.0)
0.0 (0.0)

0.0 (0.0)
100.0 (100.0)

0.0 (0.0)
0.0 (0.0)

100.0(100.0)
0.0 (0.0)

0.0 (0.0)
100.0 (100.0)

0.0 (0.0)
0.0 (0.0)

100.0(100.0)
0.0 (0.0)

0.0 (0.0)
100.0 (100.0)

0.0 (0.0)
0.0 (0.0)

100.0(100.0)
0.0 (0.0)

0.0 (0.0)
100.0 (100.0)

0.0 (0.0)
0.0(0.0)

100.0(100.0)
0.0 (0.0)

Note. Two entries are shown under each condition. Values outside parentheses are the sums of Type I and Type II error rates derived from the robustness
condition, whereas values in parentheses are the sums of error rates derived from the nonrobustness condition. SRMR = standardized root mean squared
residual.

"True-population model. bMisspecified model I. cSum of Type I and Type II error rates.



APPENDIX TABLE 9
Rejection Rates (%) and the Sum of Type I and Type II Error Rates (%) tor Simple and Complex True-Population Models and

Misspecified Models (I) Based on Combinational Rules With Me < .90 and SRMR > .06 (.07, .08, .09, .10, .11)

Cutoff Value

Me = .90 and SRMR = .06
Simple

Complex

Me = .90 and SRMR = .07
Simple

Complex

Me = .90 and SRMR = .08
Simple

Complex

150

5.0" (90.9)
100.0» (100.0)

5.0= (90.9)
4.5 (88.8)

98.8 (100.0)
5.7 (88.8)

4.3 (84.6)
100.0 (100.0)

4.3 (84.6)
4.5 (84.6)

100.0 (100.0)
7.8 (84.6)

4.3 (78.9)
100.0 (100.0)

4.3 (78.9)
4.5 (79.5)

96.7 (99.9)
7.8 (79.6)

250

0.0(72.1)
100.0(100.0)

0.0(72.1)
0.0 (69.9)

98.0(100.0)
2.0 (69.9)

0.0 (67.3)
100.0(100.0)

0.0 (67.3)
0.0(65.5)

98.0(99.9)
2.0(65.6)

0.0 (64.0)
100.0(100.0)

0.0(64.0)
0.0 (62.5)

98.0(99.9)
2.0(62.6)

500

0.0 (27.6)
100.0 (100.0)

0.0 (27.6)
0.0 (27.6)

99.8 (99.9)
0.2 (27.7)

0.0(27.7)
100.0(100.0)

0.0(27.1)
0.0 (26.3)

99.8 (99.9)
0.2 (26.4)

0.0 (26.9)
100.0 (100.0)

0.0 (26.9)
0.0 (26.0)

99.8 (99.9)
0.2(26.1)

N

1,000

0.0 (4.5)
100.0(100.0)

0.0 (4.5)
0.0(3.1)

100.0(100.0)
0.0(3.1)

0.0(4.5)
100.0(100.0)

0.0 (4.5)
0.0 (2.8)

100.0 (100.0)
0.0 (2.8)

0.0(4.5)
100.0(100.0)

0.0(4.5)
0.0(2.8)

100.0(100.0)
0.0(2.8)

2,500

0.0 (0.6)
100.0(100.0)

0.0(0.6)
0.0(0.5)

100.0(100.0)
0.0 (0.5)

0.0 (0.6)
100.0(100.0)

0.0 (0.6)
0.0(0.5)

100.0(100.0)
0.0(0.5)

0.0(0.6)
100.0(100.0)

0.0(0.6)
0.0(0.5)

100.0 (100.0)
0.0 (0.5)

5,000

0.0(0.1)
100.0 (100.0)

0.0(0.1)
0.0 (0.0)

10.0(100.0)
90.0 (0.0)

0.0(0.1)
100.0 (100.0)

0.0 (0.1)
0.0 (0.0)

100.0(100.0)
0.0 (0.0)

0.0(0.1)
100.0 (100.0)

0.0 (0.1)
0.0(0.0)

100.0(100.0)
0.0(0.0)



Mc = .9OandSRMR = .O9
Simple

Complex

Mc = .90andSRMR = .10
Simple

Complex

Mc = .90andSRMR = . l l
Simple

Complex

4.3 (75.1)
99.5 (99.8)
4.8 (75.3)
4.5 (75.9)

96.7 (99.5)
7.8 (76.4)

4.3 (72.8)
98.3 (99.6)
6.0 (73.2)
4.5(74.1)

96.7(99.1)
7.8 (73.3)

4.3 (71.5)
95.2 (99.3)

9.1 (72.2)
4.5 (72.4)

96.7(99.1)
7.8 (73.3)

0.0 (63.0)
100.0(100.0)

0.0 (63.0)
0.0 (61.0)

98.0(99.0)
2.0(61.1)

0.0(62.3)
99.0(100.0)

1.0(62.3)
0.0 (60.4)

98.0 (99.9)
2.0 (60.5)

0.0 (62.3)
95.8 (99.6)

4.2 (62.7)
0.0 (59.8)

98.0(99.9)
2.0(59.9)

0.0(26.8)
100.0(100.0)

0.0(26.8)
0.0 (25.8)

99.8 (99.9)
0.2 (25.9)

0.0(26.5)
100.0(100.0)

0.0(26.8)
0.0 (25.8)

99.8 (99.9)
0.2 (25.9)

0.0 (26.8)
98.8 (99.5)

1.2(27.3)
0.0 (25.8)

99.8 (99.9)
0.2 (25.9)

0.0(4.5)
100.0(100.0)

0.0 (4.5)
0.0 (2.8)

100.0(100.0)
0.0(2.8)

0.0(4.5)
100.0(100.0)

0.0(4.5)
0.0(2.8)

100.0(100.0)
0.0(2.8)

0.0(4.5)
99.7 (99.8)
0.3(5.7)
0.0(2.8)

100.0(100.0)
0.0(2.8)

0.0 (0.6)
100.0 (100.0)

0.0 (0.6)
0.0 (0.5)

100.0(100.0)
0.0 (0.5)

0.0 (0.6)
100.0(100.0)

0.0 (0.6)
0.0 (0.5)

100.0(100.0)
0.0 (0.5)

0.0 (0.6)
100.0(99.6)

0.0(1.0)
0.0 (0.5)

100.0(100.0)
0.0(0.5)

0.0(0.1)
100.0(100.0)

0.0 (0.1)
0.0 (0.0)

100.0 (100.0)
0.0 (0.0)

0.0(0.1)
100.0(100.0)

0.0 (0.1)
0.0 (0.0)

100.0(100.0)
0.0 (0.0)

0.0 (0.1)
100.0(100.0)

0.0(0.1)
0.0 (0.0)

100.0(100.0)
0.0 (0.0)

Note. Two entries are shown under each condition. Values outside parentheses are the sums of Type I and Type II error rates derived from the robustness
condition, whereas values in parentheses are the sums of error rates derived from the nonrobustness condition. Me = McDonald's Centrality Index; SRMR =
standardized root mean squared residual.

'True-population model. bMisspecified model I. cSum of Type I and Type II error rates.
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APPENDIX TABLE 10
Rejection Rates (%) and the Sum of Type I and Type II Error Rates (%) for Simple and Complex True-Population Models and

Misspecified Models (I) Based on Combinational Rules With Me < .91 and SRMR > .06 (.07, .08, .09, .10, .11)

Cutoff Value

Me = .9 land SRMR = .06
Simple

Complex

Me = .9 land SRMR = .07
Simple

Complex

Me = .9 land SRMR = .08
Simple

Complex

150

6.5' (92.9)
lOO.O6 (100.0)

6.5C (92.9)
5.8 (90.4)

93.8 (100.0)
12.0 (90.4)

5.8 (87.1)
100.0(100.0)

5.8 (87.1)
5.8 (86.3)

100.0 (100.0)
7.8 (86.3)

5.8 (81.6)
100.0 (100.0)

5.8(81.6)
5.8 (81.3)

98.0 (99.9)
7.8 (81.4)

250

0.2 (75.5)
100.0(100.0)

0.2 (75.5)
0.2 (74.0)

99.3 (100.0)
0.9 (74.0)

0.2 (70.6)
100.0 (100.0)

0.2 (70.6)
0.2 (69.6)

99.3 (100.0)
0.9 (69.6)

0.2 (67.4)
100.0(100.0)

0.2 (67.4)
0.2 (66.6)

99.3 (100.0)
0.9 (66.6)

500

0.0 (37.8)
100.0 (100.0)

0.0 (37.8)
0.0 (34.3)

100.0 (100.0)
0.0 (34.3)

0.0 (37.3)
100.0(100.0)

0.0 (37.3)
0.0 (32.9)

100.0(100.00
0.0 (32.9)

0.0 (37.0)
100.0 (100.0)

0.0 (37.0)
0.0 (32.6)

100.0 (100.0)
0.0 (32.6)

N

7,000

0.0(6.0)
100.0(100.0)

0.0 (6.0)
0.0(5.9)

100.0(100.0)
0.0(5.9)

0.0 (6.0)
100.0(100.0)

0.0(6.0)
0.0(5.5)

100.0(100.0)
0.0 (5.5)

0.0(6.0)
100.0(100.0)

0.0 (6.0)
0.0(5.5)

100.0(100.0)
0.0 (5.5)

2,500

0.0 (0.6)
100.0(100.0)

0.0 (0.6)
0.0 (0.6)

100.0(100.0)
0.0 (0.6)

0.0 (0.6)
100.0(100.0)

0.0 (0.6)
0.0 (0.6)

100.0(100.0)
0.0 (0.6)

0.0 (0.6)
100.0(100.0)

0.0 (0.6)
0.0 (0.6)

100.0(100.0)
0.0 (0.6)

5,000

0.0(0.1)
1.5(100.0)
0.0(0.1)
0.0(0.1)

100.0(100.0)
0.0(0.1)

0.0(0.1)
100.0(100.0)

0.0(0.1)
0.0(0.1)

100.0(100.0)
0.0(0.1)

0.0(0.1)
100.0(100.0)

0.0(0.1)
0.0(0.1)

100.0(100.0)
0.0(0.1)



Me = .91 and SRMR = .09
Simple

Complex

Me = .91 and SRMR = .10
Simple

Complex

Me = .91 and SRMR = .11
Simple

Complex

5.8 (75.0)
99.5 (99.8)
6.3 (78.2)
5.8 (77.8)

98.0 (99.8)
7.8 (78.0)

5.8 (75.6)
98.5 (99.8)
7.3 (75.8)
5.8 (76.0)

98.0(99.5)
7.8 (76.5)

5.8 (74.4)
95.7 (99.4)
10.1 (75.0)
5.8 (74.3)

98.0(99.5)
7.8 (74.8)

0.2 (66.4)
100.0 (100.0)

0.2 (66.4)
0.2 (65.1)

99.3 (100.0)
0.9 (65.1)

0.2 (65.6)
99.0(100.0)

1.2(65.6)
0.2 (64.5)

99.3 (100.0)
0.9 (64.5)

0.2 (65.6)
95.8 (99.6)

4.4 (66.0)
0.2 (63.9)

99.3 (100.0)
0.9(36.1)

0.0(56.9)
100.0(100.0)

0.0(36.9)
0.0 (32.4)

100.0 (100.0)
0.0 (32.4)

0.0 (36.9)
100.0(100.0)

0.0(36.9)
0.0(52.4)

100.0 (100.0)
0.0 (32.4)

0.0 (36.9)
99.0 (99.8)

1.0(37.1)
0.0 (32.4)

100.0(100.0)
0.0(32.4)

0.0 (6.0)
100.0(100.0)

0.0 (6.0)
0.0 (5.5)

100.0 (100.0)
0.0 (5.5)

0.0 (6.0)
100.0 (100.0)

0.0 (6.0)
0.0 (5.5)

100.0(100.0)
0.0 (5.5)

0.0 (6.0)
99.7 (99.1)

0.3 (6.9)
0.0(5.5)

100.0(100.0)
0.0(5.5)

0.0 (0.6)
100.0(100.0)

0.0(0.6)
0.0 (0.6)

100.0 (100.0)
0.0 (0.6)

0.0 (0.6)
100.0 (100.0)

0.0 (0.6)
0.0 (0.6)

100.0(100.0)
0.0(0.6)

0.0 (0.6)
100.0 (99.6)

0.0 (1.0)
0.0 (0.6)

100.0(100.0)
0.0 (0.6)

0.0 (0.1)
100.0(100.0)

0.0(0.1)
0.0(0.1)

100.0(100.0)
0.0(0.1)

0.0(0.1)
100.0 (100.0)

0.0(0.1)
0.0(0.1)

100.0(100.0)
0.0(0.1)

0.0(0.1)
100.0 (100.0)

0.0(0.1)
0.0(0.1)

100.0(100.0)
0.0(0.1)

Note. Two entries are shown under each condition. Values outside parentheses are the sums of Type I and Type II error rates derived from the robustness
condition, whereas values in parentheses are the sums of error rates derived from the nonrobustness condition. Me = McDonald's Centrality Index; SRMR =
standardized root mean squared residual.

"True-population model. bMisspecified model I. cSum of Type I and Type II error rates.
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APPENDIX TABLE 11
Rejection Rates (%) and the Sum of Type I and Type II Error Rates (%) for Simple and Complex True-Population Models and

Misspecified Models (I) Based on Combinational Rules With RMSEA < .05 and SRMR > .06 (.07, .08, .09, .10, .11)

Cutoff Value

RMSEA = .05 and SRMR = .06
Simple

Complex

RMSEA = .05 and SRMR = .07
Simple

Complex

RMSEA = .05 and SRMR = .08
Simple

Complex

150

4.7« (90.5)
100.011 (100.0)

4.7* (90.5)
4.7 (88.8)

98.8 (100.0)
5.9 (88.8)

4.0 (84.1)
100.0 (100.0)

4.0(84.1)
4.7 (84.5)

96.7 (100.0)
8.0 (84.5)

4.0 (78.4)
100.0(100.0)

4.0 (78.4)
4.7 (J9.4)

96.7 (99.9)
8.0(79.5)

250

0.0(71.6)
100.0 (100.0)

0.0 (71.6)
0.0 (69.9) .

98.0(100.0)
2.0 (69.9)

0.0 «5<5.S)
100.0 (100.0)

0.0 (66.8)
0.0 (65.5)

98.0 (99.9)
2.0 (65.6)

0.0 (63.5)
100.0(100.0)

0.0 (63.5)
0.0 (62.5)

98.0 (99.9)
2.0(62.6)

500

0.0(25.4)
100.0 (100.0)

0.0 (25.4)
0.0 (27.8)

99.8 (99.9)
0.2 (27.9)

0.0(24.9)
100.0(100.0)

0.0(24.9)
0.0(26.4)

99.8 (99.9)
0.2 (26.5)

0.0 (24.6)
100.0(100.0)

0.0(24.6)
0.0 (26.1)

99.8(99.9)
0.2 (26.2)

N

1,000

0.0 (3.6)
100.0(100.0)

0.0(3.6)
0.0(3.3)

100.0(100.0)
0.0 (3.3)

0.0(3.6)
100.0(100.0)

0.0(3.6)
0.0(2.9)

100.0(100.0)
0.0 (2.9)

0.0(3.6)
100.0(100.0)

0.0(3.6)
0.0(2.9)

100.0(100.0)
0.0(2.9)

2,500

0.0 (0.6)
100.0(100.0)

0.0 (0.6)
0.0 (0.5)

100.0(100.0)
0.0 (0.5)

0.0 (0.6)
100.0(100.0)

0.0 (0.6)
0.0 (0.5)

100.0(100.0)
0.0 (0.5)

0.0 (0.6)
100.0(100.0)

0.0 (0.6)
0.0 (0.5)

100.0(100.0)
0.0 (0.5)

5,000

0.0(0.1)
100.0(100.0)

0.0(0.1)
0.0 (0.0)

100.0 (0.0)
0.0 (0.0)

0.0 (0.1)
100.0 (100.0)

0.0(0.1)
0.0 (0.0)

100.0 (100.0)
0.0 (0.0)

0.0(0.1)
100.0(100.0)

0.0(0.1)
0.0 (0.0)

100.0(100.0)
0.0 (0.0)



RMSEA = .05 and SRMR = .09
Simple

Complex

RMSEA = .05 and SRMR = . 10
Simple

Complex

RMSEA = .05 and SRMR = .11
Simple

Complex

4.0(74.5)
99.5 (99.8)
4.5 (74.7)
4.7 (75.5)

96.7 (99.4)
8.0(76.4)

4.0(72.^)
98.3 (99.6)

5.7(72.5)
4.7 (74.0)

96.7 (99.0)
8.0(75.0)

4.0 (70.9)
94.8 (99.3)

9.2(71.6)
4.7 (72.3)

96.7 (99.0)
8.0 (73.3)

0.0 (62.5)
100.0(100.0)

0.0(62.5)
0.0(67.0)

98.0(99.8)
2.0(61.2)

0.0(<5/.<S)
99.0(100.0)

1.0(61.8)
0.0(60.4)

98.0(99.8)
2.0(60.6)

0.0(67.S)
95.8 (99.6)

4.2 (62.2)
0.0(59.8)

98.0 (99.8)
2.0 (60.0)

0.0 (24.5)
100.0 (100.0)

0.0 (24.5)
0.0 (25.9)

99.8 (99.9)
0.2 (26.0)

0.0 (24.5)
100.0(100.0)

0.0 (24.5)
0.0(25.9)

99.8 (99.9)
0.2 (26.0)

0.0(24.5)
98.8 (99.5)

1.2(25.0)
0.0(25.9)

99.8 (99.9)
0.2 (26.0)

0.0 (3.6)
100.0(100.0)

0.0 (3.6)
0.0 (2.9)

100.0(100.0)
0.0 (2.9)

0.0 (3.6)
100.0 (100.0)

0.0 (3.6)
0.0 (2.9)

100.0(100.0)
0.0 (2.9)

0.0 (3.6)
99.7 (98.8)

0.3 (4.8)
0.0(2.9)

100.0(100.0)
0.0(2.9)

0.0 (0.6)
100.0 (100.0)

0.0 (0.6)
0.0 (0.5)

100.0 (100.0)
0.0 (0.5)

0.0 (0.6)
100.0 (100.0)

0.0 (0.6)
0.0 (0.5)

100.0 (100.0)
0.0 (0.5)

0.0 (0.6)
100.0 (99.6)

0.0(1.0)
0.0 (0.5)

100.0 (100.0)
0.0 (0.5)

0.0 (0.1)
100.0 (100.0)

0.0(0.1)
0.0 (0.0)

100.0 (100.0)
0.0 (0.0)

0.0(0.1)
100.0 (100.0)

0.0(0.1)
0.0 (0.0)

100.0 (100.0)
0.0 (0.0)

0.0(0.1)
100.0(100.0)

0.0(0.1)
0.0 (0.0)

100.0(100.0)
0.0 (0.0)

Note. Two entries are shown under each condition. Values outside parentheses are the sums of Type I and Type II error rates derived from the robustness
condition, whereas values in parentheses are the sums of error rates derived from the nonrobustness condition. RMSEA = root mean squared error of
approximation. SRMR = standardized root mean squared residual.

"True-population model. bMisspecified model I. cSum of Type I and Type II error rates.
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APPENDIX TABLE 12

Rejection Rates (%) and the Sum of Type I and Type II Error Rates (%) for Simple and Complex True-Population Models and
Misspecified Models (I) Based on Combinational Rules With RMSEA < .06 and SRMR > .06 (.07, .08, .09, .10, .11)

Cutoff Value

RMSEA = .06 and SRMR = .06
Simple

Complex

RMSEA = .06 and SRMR = .07
Simple

Complex

RMSEA = .06 and SRMR = .08
Simple

Complex

150

22'(84.1)
100.0" (100.0)

2.2C(84.1)
0.5 (79.5)

95.3 (100.0)
5.2 (79.5)

1.0(75.7)
100.0 (100.0)

1.0(75.1)
0.5 (74.4)

84.5 (100.0)
16.0(74.4)

1.0(68.6)
100.0(100.0)

1.0(68.6)
0.5 (68.6)

81.7(99.3)
18.8 (69.3)

250

0.0(47.7)
100.0(100.0)

0.0(47.1)
0.0 (49.8)

90.7(100.0)
9.3 (49.8)

0.0 (42.3)
100.0(100.0)

0.0 (42.3)
0.0 (45.4)

89.3 (99.4)
10.7 (46.0)

0.0 (39.0)
100.0(100.0)

0.0(39.0)
0.0 (42.4)

59.2(98.1)
10.8 (44.3)

500

0.0 (10.4)
100.0(100.0)

0.0 (10.4)
0.0 (11.3)

96.2 (99.9)
3.8(11.4)

0.0 (9.8)
100.0(100.0)

0.0 (9.8)
0.0 (9.9)

96.0 (99.5)
4.0(10.4)

0.0 (9.5)
100.0 (100.0)

0.0 (9.5)
0.0 (9.6)

96.0(99.1)
4.0 (10.5)

N

7.000

0.0 (0.5)
100.0(100.0)

0.0 (0.5)
0.0(1.0)

99.3 (99.9)
0.7(1.1)

0.0 (0.5)
100.0(100.0)

0.0 (0.5)
0.0 (0.6)

99.3 (99.6)
0.7 (1.0)

0.0 (0.5)
100.0(100.0)

0.0 (0.5)
0.0 (0.6)

99.3 (99.6)
0.7(1.0)

2.500

0.0(0.0)
100.0(100.0)

0.0(0.0)
0.0(0.0)

100.0(100.0)
0.0(0.0)

0.0(0.0)
100.0(100.0)

0.0(0.0)
0.0(0.0)

100.0(100.0)
0.0 (0.0)

0.0 (0.0)
100.0 (100.0)

0.0 (0.0)
0.0 (0.0)

100.0 (100.0)
0.0 (0.0)

5,000

0.0 (0.0)
100.0(100.0)

0.0 (0.0)
0.0 (0.0)

100.0(100.0)
0.0 (0.0)

0.0 (0.0)
100.0(100.0)

0.0 (0.0)
0.0 (0.0)

100.0(0.0)
0.0(0.0)

0.0(0.0)
100.0 (100.0)

0.0 (0.0)
0.0 (0.0)

100.0 (100.0)
0.0 (0.0)



RMSEA = .06 and SRMR = .09
Simple

Complex

RMSEA = .06 and SRMR = .10
Simple

Complex

RMSEA = .06 and SRMR = .11
Simple

Complex

1.0 (64.8)
99.5 (99.8)

1.5(65.0)
0.5 (64.8)

81.7 (97.8)
18.8 (67.0)

1.0 (62.3)
98.3 (99.4)

2.7 (62.9)
0.5 (63.0)

81.7(96.8)
18.8 (66.2)

1.0(61.0)
94.3 (98.8)

6.7 (62.2)
0.5 (61.3)

81.7(96.3)
18.8(65.0)

0.0(58.0)
100.0(100.0)

0.0 (38.0)
0.0(40.9)

89.2 (97.4)
10.8 (43.5)

0.0(57.3)
99.0(99.6)

1.0(37.7)
0.0(40.3)

89.2 (97.0)
10.8 (43.3).

0.0(57.5)
95.7 (98.9)
4.3 (38.4)
0.0(39.6)

89.2 (96.6)
10.8 (43.0)

0.0 (9.4)
100.0 (100.0)

0.0 (9.4)
0.0 (9.4)

96.0 (99.0)
4.0(10.4)

0.0 (9.4)
100.0(99.5)

0.0 (9.9)
0.0 (9.4)

96.0 (99.0)
4.0(10.4)

0.0(9.4)
98.5 (97.6)

1.5(11.8)
0.0(9.4)

96.0(99.0)
4.0(10.4)

0.0 (0.5)
100.0(100.0)

0.0(0.5)
0.0 (0.6)

99.3 (99.6)
0.7(1.0)

0.0 (0.5)
100.0(100.0)

0.0 (0.5)
0.0 (0.6)

99.3 (99.6)
0.7(1.0)

0.0 (0.5)
99.7 (98.5)

0.3 (2.0)
0.0 (0.6)

99.3 (99.6)
0.7(1.0)

0.0 (0.0)
100.0 (100.0)

0.0 (0.0)
0.0(0.0)

100.0(100.0)
0.0 (0.0)

0.0 (0.0)
100.0 (100.0)

0.0 (0.0)
0.0 (0.0)

100.0(100.0)
0.0 (0.0)

0.0 (0.0)
100.0 (99.6)

0.0 (0.4)
0.0 (0.0)

100.0(100.0)
0.0 (0.0)

0.0 (0.0)
100.0 (100.0)

0.0 (0.0)
0.0 (0.0)

100.0 (100.0)
0.0 (0.0)

0.0 (0.0)
100.0(100.0)

0.0(0.0)
0.0(0.0)

100.0 (100.0)
0.0 (0.0)

0.0 (0.0)
100.0(100.0)

0.0 (0.0)
0.0 (0.0)

100.0(100.0)
0.0 (0.0)

Note. Two entries are shown under each condition. Values outside parentheses are the sums of Type I and Type II errorrates derived from the robustness
condition, whereas values in parentheses are the sums of error rates derived from the nonrobustness condition. RMSEA = root mean squared error of
approximation. SRMR = standardized root mean squared residual.

"True-population model. bMisspecified model I. cSum of Type I and Type II error rates.


