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In Search of Underlying Dimensions:
The Use (and Abuse) of Factor Analysis in
Personality and Social Psychology Bulletin

Daniel W. Russell
Iowa State University

An examination of the use of exploratory and confirmatory fac-
tor analysis by researchers publishing in Personality and
Social Psychology Bulletin over the previous 5 years is pre-
sented, along with a review of recommended methods based on
the recent statistical literature. In the case of exploratory factor
analysis, an examination and recommendations concerning
factor extraction procedures, sample size, number of measured
variables, determining the number of factors to extract, factor
rotation, and the creation of factor scores are presented. These
issues are illustrated via an exploratory factor analysis of data
from the University of California, Los Angeles, Loneliness Scale.
In the case of confirmatory factor analysis, an examination and
recommendations concerning model estimation, evaluating
model fit, sample size, the effects of non-normality of the data,
and missing data are presented. These issues are illustrated via
a confirmatory factor analysis of data from the Revised Causal
Dimension Scale.

Factor analysis is a commonly used statistical proce-
dure in the areas of personality and social psychology. A
recent article by Fabrigar, Wegener, MacCallum, and
Strahan (1999) reported that 159 of the 883 articles
(18%) appearing in the Journal of Personality and Social
Psychology from 1991 to 1995 reported an exploratory fac-
tor analysis. I conducted a similar review of articles
appearing in Personality and Social Psychology Bulletin
(PSPB) during the years 1996, 1998, and 2000.1 Eighty-
five of the 320 empirical articles (27%) appearing in
PSPB over these 3 years included one or more factor anal-
yses, either an exploratory factor analysis, principal com-
ponents analysis, or a confirmatory factor analysis.
Although the change is not statistically significant, the
frequency of factor analyses in these articles appears to
be increasing slightly over time, from 26% in 1996 to
29% in 2000.

Why do investigators conduct factor analyses? My
review of articles published in PSPB indicated that 80 of
the 156 factor analyses (51%) that were reported over
this 3-year period were performed for data reduction
(i.e., reducing a set of items to a smaller set of more reli-
able measures). Another 60 factor analyses (39%) were
conducted to test a hypothesized factor structure for a
set of measures. Eleven (7%) of the remaining factor
analyses were conducted to test a measurement model
associated with a structural equation modeling analysis,
using confirmatory factor analysis software. The remain-
ing factor analyses involved an evaluation of the redun-
dancy among a set of measures (n = 4, 3%) or a replica-
tion of results from a prior factor analysis (n = 1, 1%).

Despite the common use of these procedures, there
appear to be a number of problems associated with both
the use of these statistical procedures and the reporting
of results of the analyses in these articles. The purpose of
this article is to review the use of factor analysis in PSPB
and to discuss both how investigators are using these
techniques and ideally how such analyses should be con-
ducted. My purpose is not to criticize any specific publi-
cations. Instead, I will focus on how researchers in gen-
eral are using these procedures and ways in which this
usage can be improved. In presenting this analysis, I will
rely on recent work, especially Monte Carlo studies rele-
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vant to exploratory and confirmatory factor analysis and
the article by Fabrigar et al. (1999) in Psychological
Methods cited earlier. I also will express some of my own
views concerning the use of these methods, as will be
noted at various points in the discussion. The discussion
will first focus on exploratory factor analysis and then
will turn to confirmatory factor analysis.

EXPLORATORY FACTOR ANALYSIS

Factor Extraction Procedures

The first issue faced by any investigator planning an
exploratory factor analysis concerns how to extract fac-
tors from the data. The classic factor analysis equation
specifies that a measure being factored can be repre-
sented by the following equation:

x1 = w11F1 + w21F2 +  . . . wn1Fn + w1U1 + e1,

where the Fs represent the common factors that underlie
the measures being analyzed and the Us represent fac-
tors that are unique to each measure. The ws represent
loadings of each item (or measure) on the respective fac-
tors, whereas the es reflect random measurement error
in each item. Note that each measured variable has its
own unique factor, reflecting systematic variance in the
item or measure that is not shared with the other mea-
sures being analyzed.

On the basis of this equation, the variance in the mea-
sure being factored (i.e., σ2

x) can be separated into three
parts. First, there is a part of the variance in the measure
that reflects the influence of the common factors,
termed the communality of the variable. Second, there is
a part of the variance that reflects the influence of the
factor unique to that measure. Third, there is random
error variance.

Two commonly used methods for extracting factors in
the context of an exploratory factor analysis are princi-
pal components analysis and principal axis factoring.2

Indeed, of the 137 exploratory factor analyses reported
in PSPB during the years of 1996, 1998, and 2000, 85
(62%) employed principal components analysis to
extract the factors, whereas 15 (11%) used principal axis
factoring. (The remaining analyses either did not specify
the method of extraction [36, or 26%] or used general-
ized least square extraction [1 analysis].) Principal com-
ponents analysis and principal axis factoring involve the
same procedure for extracting factors from the correla-
tion matrix. Where they differ involves the estimation of
communalities for the measured variables, or the vari-
ance that each measured variable shares with the other
measured variables. In principal components analysis,
the communalities for the measures are set at 1.0. In
essence, this procedure assumes that all of the variance

in a measure is potentially explicable by the factors
(components) that are derived. It should be noted that
because the communalities of the measures are set at 1.0,
a principal components analysis extracts the factors
based on the correlations among the measures (i.e., a
correlation matrix is analyzed).

By contrast, in principal axis factoring, some estimate
of the communality for each measure is employed, typi-
cally the squared multiple correlation between that mea-
sure and the other measures used in the analysis. Theo-
retically, this estimate of the communality reflects the
variance in each measure due to the influence of the fac-
tors; one minus the communality reflects variance in
each measure due to the unique factor and random
error. Rather than extracting the factors using the corre-
lations among the items, principal axis factoring extracts
the factors using a reduced correlation matrix, where
the 1.0 values on the diagonal of the correlation matrix
are replaced by these initial communality estimates. In
essence, one is analyzing a covariance matrix, where the
variance of each measure reflects its association with the
other measures included in the factor analysis.

In conducting a principal axis factor analysis, statisti-
cal programs such as SPSS or SAS will initially use the
squared multiple correlation between each measure
and the other measures being factored as the estimate
of the communality for each measure.3 After the num-
ber of factors is determined, a new estimate of the
communality of each measure can be derived by squar-
ing the loading of the measure on each factor and sum-
ming these squared loadings together. A second
extraction of the factors is then conducted using this
new estimate of the communality of each measure.
This procedure continues until the estimates of the
communalities converge (i.e., change minimally from
one factor extraction to another).

Due to space limitations, I will not review how princi-
pal factoring is conducted; the interested reader should
see the description of the procedure in books on factor
analysis, such as Gorsuch (1983) or Comrey and Lee
(1992). Some comments on the results of such an extrac-
tion procedure are in order, however, and apply to both
principal components analysis and principal axis factor-
ing. In extracting the factors, principal factoring derives
loadings of the measures on the factors that maximize
the variance explained by each factor. So, for example,
loadings on the first factor that is extracted are designed
to account for the maximum variance in the data matrix
being analyzed (i.e., the correlation matrix in the case of
a principal components analysis or the reduced correla-
tion matrix in the case of principal axis factoring). Once
this first factor has been extracted, a residual matrix is
computed by calculating what the correlations between
the measures should be based on the first factor4 (i.e.,
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the predicted correlation) and subtracting these values
from the actual correlation between the measures. So,
for example, if the actual correlation between the mea-
sures is .30 and the predicted correlation is .35, then the
residual correlation is –.05. Factor 2 is then extracted
based on this residual correlation matrix and, as a conse-
quence of this extraction procedure, is orthogonal or
uncorrelated with Factor 1. This procedure continues
until all the variance in the initial matrix being analyzed
is accounted for, which typically requires as many factors
as there are measures being analyzed.

Table 1 provides the results from both methods of fac-
tor extraction for the 489 college students who com-
pleted the University of California, Los Angeles (UCLA),
Loneliness Scale (Version 3) in Russell (1996). For this
analysis, the items worded in a negative or non-lonely
direction were reversed or “reflected” prior to the analy-
sis; as a result, the 20 items from the scale were all posi-
tively correlated with one another. Examination of the
loadings in Table 1 indicates one difference in the results
of a principal components analysis and a principal axis
factor analysis: Due to the higher communality estimates
of the former analysis, the loadings are typically higher
for the principal components analysis. Notice, however,
that otherwise the loadings of items on the factors are
very similar. Indeed, the correlation between the 20
loadings of the items on Component 1 and Factor 1 is
1.0, as is the correlation between the 20 loadings of the
items on Component 2 and Factor 2.

An examination of the loadings on Component 1 and
Factor 1 indicates that all of the items have strong posi-
tive loadings on this factor. Loadings of the items on
Component 2 and Factor 2 indicate that these dimen-
sions are bipolar, with some items having strong negative
loadings and some items having strong positive loadings.
Before one begins to develop elaborate theories of lone-
liness to account for this factor structure, it should be
noted that this is an artifact of the factor extraction pro-
cedure. Given that all of the items on the loneliness scale
are positively correlated with one another, the loadings
on Component 1 and Factor 1 are of necessity positive
because that maximizes the variance in the positive cor-
relations explained by the first component or factor.
After the predicted correlations among the 20 items due
to Component 1 or Factor 1 are removed from the
matrix being analyzed, the residual matrix will consist of
some positive values (where the correlation between two
items was underestimated) and some negative values
(where the correlation between two items was overesti-
mated). As a consequence, Component 2 or Factor 2 will
tend to be bipolar, with a mixture of positive and nega-
tive loadings.

To illustrate this point, consider the correlation
between Items 1 and 2 (r = .13). On the basis of the load-

ings of these two items on Component 1 in Table 1, the
correlation between these two items is estimated to be
.35 (i.e., .55 * .63). The residual correlation between
Items 1 and 2 is therefore .13 – .35, or –.22. Given that
this residual correlation is negative, it is not surprising
that the loading of Item 1 on Component 2 is –.42 and
the loading of Item 2 on Component 2 is .36. On the
basis of these latter two loadings, the predicted correla-
tion between the two items is estimated to be –.15, lead-
ing to a residual correlation of –.07 (i.e., –.22 – [–.15]).

Is it important which factor extraction procedure you
use? Given that both principal components analysis and
principal axis factoring employ the same method of
extracting factors, the issue revolves around the estima-
tion of the communalities for the measures. Some writ-
ers, such as Velicer and Jackson (1990), have argued that
one gets very similar results using the two factor extrac-
tion procedures, particularly if one is analyzing a large
number of measures with relatively high communalities
(i.e., squared multiple correlations). A number of simu-
lation studies (Bentler & Kano, 1990; Schneeweiss, 1997;
Schneeweiss & Mathes, 1995) have demonstrated the
equivalence of derived components and factors in the
context of an infinite sample of measured variables.
Finally, a recent study by Ogasawara (2000) has gener-
ated the asymptotic correlations between components
and factors for both actual and simulated data sets, dem-
onstrating when the correlation between factors and
components should equal 1.0.

However, a Monte Carlo analysis by Widaman (1993)
indicated that principal axis factoring using squared
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TABLE 1: Unrotated Factor Loadings From the Principal Compo-
nents and Principal Axis Factoring Analyses

Item Component 1 Component 2 Factor 1 Factor 2

1 .55 –.42 .53 –.32
2 .63 .36 .61 .30
3 .70 .07 .68 .06
4 .66 .28 .64 .24
5 .61 –.35 .59 –.28
6 .61 –.37 .59 –.30
7 .67 .23 .65 .19
8 .56 .25 .53 .19
9 .51 –.37 .49 –.27

10 .66 –.33 .64 –.28
11 .60 .33 .58 .27
12 .63 .35 .61 .29
13 .71 .16 .69 .15
14 .73 .21 .72 .19
15 .61 –.15 .58 –.12
16 .68 –.15 .66 –.13
17 .36 .27 .33 .17
18 .60 .29 .57 .22
19 .66 –.35 .64 –.31
20 .68 –.32 .66 –.28
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multiple correlations as the initial estimate of the
communalities and then iterating this estimate to a final
communality estimate provided more accurate results in
terms of the population factor loadings than principal
components analysis. His findings suggest that in certain
situations the extraction procedure could lead to sub-
stantive differences in the factor loadings. Therefore,
researchers would be wise to use principal axis factoring
rather than principal components analysis.

As illustrated in Table 1, in my experience, the main
difference between extractions based on principal com-
ponents analysis and principal axis factoring involves the
magnitude of the factor loadings. Why do researchers
publishing in PSPB tend to use principal components
analysis rather than principal axis factoring? One reason
may be that the default factor extraction procedure in
both SPSS and SAS is principal components analysis. If
you choose to conduct a principal axis factor analysis,
both of these statistical packages employ the squared
multiple correlations as the initial communality estimate
and iterate to a final communality estimate for each mea-
sure, as recommended by Widaman (1993).

Sample Size

The traditional rule concerning the number of partic-
ipants to include in a factor analysis has focused on the
number of cases relative to the number of measures that
are being factored. Minimums of 5 or 10 cases per mea-
sure have typically been recommended (Comrey & Lee,
1992; Gorsuch, 1983). Based on my review of explor-
atory factor analyses appearing in PSPB during the years
1996, 1998, and 2000, 19 of the exploratory factor analy-
ses (14%) involved fewer than five cases per measure and
58 of the exploratory factor analyses (42%) involved
fewer than 10 cases per measure. Clearly, a large number
of the exploratory factor analyses in PSPB involve less
than the recommended number of cases relative to the
number of items.

Recently a Monte Carlo study by MacCallum,
Widaman, Zhang, and Hong (1999) examined the issue
of sample size in exploratory factor analysis. These inves-
tigators tested the ability of an exploratory factor analysis
to reproduce the population factor loadings for differ-
ent sample sizes and variation in the communalities of
the variables. They found that results were very consis-
tent with the population loadings even with sample sizes
as low as 60 cases if the communalities of the items were
high (e.g., .60 or greater). With lower communality lev-
els (e.g., around .50), samples of 100 to 200 cases were
required to accurately reproduce the population
loadings.

My review of exploratory factor analyses reported in
PSPB indicated that 54 of the factor analyses (39%)
involved samples of 100 or fewer cases and another 31

analyses (23%) involved from 100 to 200 cases. Unfortu-
nately, very few of these researchers provided any
information on the communalities associated with the
measures, and none of the reports included information
on the communalities for all of the measures that were
analyzed. Therefore, it is impossible to judge how appro-
priate the sample sizes were for the exploratory factor
analyses that were conducted.

Number of Measures Per Factor

A related issue involves the number of measures that
are employed in an exploratory factor analysis relative to
the number of factors that are extracted. This is the issue
of identification, or having a sufficient number of mea-
sures that load on each factor to be able to adequately
operationalize the factor. At least three items per factor
are required for a factor model to be identified; more
items per factor results in overidentification of the
model. A number of writers recommend that four or
more items per factor be included in the factor analysis
to ensure an adequate identification of the factors
(Comrey & Lee, 1992; Fabrigar et al., 1999; Gorsuch,
1988).

MacCallum et al. (1999) found that in addition to the
communality of the measures, the results were more
accurate for given sample sizes if there were more mea-
sures per factor included in the analysis. Therefore, it
appears wise to test overidentified factor models where
the investigator includes four or more measures per fac-
tor in the analysis.

On the basis of their review of exploratory factor anal-
yses reported in the Journal of Personality and Social Psy-
chology (JPSP) during the years 1991 to 1995, Fabrigar
et al. (1999) reported that 18% of the analyses involved
three or fewer items per factor. I found that 33 of the
exploratory factor analyses in PSPB (25%) during the
years 1996, 1998, and 2000 included three or fewer mea-
sures per factor. Clearly, many investigators need to
include a larger number of measured variables per fac-
tor. One can argue, of course, that a researcher does not
necessarily know how many factors will emerge from an
exploratory factor analysis. As discussed further below,
however, I would maintain that many investigators have a
prediction regarding the likely factor structure of the
measures they are analyzing prior to the factor analysis.

Determining the Number of Factors

Once factors have been extracted from a correlation
matrix, one has to decide how many factors to retain as
being meaningful or important. By default, SPSS will
retain factors that have eigenvalues ≤ 1.0; this is some-
times referred to as the Kaiser criterion.5 The eigenvalues
refer to the amount of variance explained by a factor and
are computed by squaring the loadings on a factor and
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summing them together. Although SPSS uses this crite-
rion no matter what technique is used to extract the fac-
tors, in fact this criterion should only be used when prin-
cipal components analysis (with communalities fixed at
1.0) is used as the extraction procedure (see discussion
by Gorsuch, 1983).

The eigenvalue ≥ 1.0 criterion is also used by SAS to
determine the number of factors to extract when con-
ducting a principal components analysis. However, a dif-
ferent procedure is used by SAS in determining the num-
ber of factors when conducting a principal axis factor
analysis. Specifically, the amount of common factor vari-
ance across the items is determined based on the initial
communality estimates for the items. So, for example, in
the factor analysis of the items from the UCLA Loneli-
ness Scale, the initial communality of the items (based
on the squared multiple correlations) ranged from .21
to .56 (M = .44). The sum of these values was 8.82, which
represents an initial estimate of the total common factor
variance of the 20 items. Factors were then extracted by
SAS from the reduced correlation matrix, with the num-
ber of factors determined by how many were required
to account for this common factor variance. In the anal-
ysis of data from the loneliness scale, three factors were
required to account for the common factor variance and
were therefore extracted by the SAS program.

As noted by Fabrigar et al. (1999), the eigenvalue ≥ 1
criterion often leads to extracting too many factors or
overfactoring. To understand why this would be true,
imagine a situation where you are factoring a set of 5
measures versus a set of 20 measures. In the case of 5
measures, a factor that had an eigenvalue of 1.0 would be
accounting for 20% of the total variance in the measures
(i.e., 1/5, given that the total variance of the measures
equals 5 in the context of a principal components analy-
sis). By contrast, with a set of 20 items, a factor that had
an eigenvalue of 1.0 would be explaining 5% of the vari-
ance (i.e., 1/20). Clearly, when one is factoring a large
set of items it is more likely that using this criterion will
lead to extracting factors that account for only a small
amount of the total variance.

My review of factor analyses reported in PSPB indi-
cated that a large number of the analyses (74 of 134, or
55%) did not indicate the criteria used to determine the
number of factors. Of the remaining analyses, 31 of 60
(52%) used the eigenvalue ≥ 1.0 criterion. However, only
18 of these 31 analyses (58%) used this criterion in the
context of a principal components analysis. Therefore,
more than 40% of these factor analyses employed this
criterion when it was inconsistent with the factor extrac-
tion procedure.

A third criterion that is often used to determine the
number of factors is the scree test attributed to Cattell
(1966). This procedure was used by 18 of the 60 explor-

atory factor analyses (30%) reported in PSPB where the
criterion for determining the number of factors was indi-
cated. To use this method, one plots the eigenvalues of
the factors extracted either from the correlation matrix
(i.e., with 1.0 in the diagonal) or the reduced correlation
matrix (with communalities in the diagonal) in descend-
ing order. Computer programs such as SPSS or SAS will
plot these values. One then looks for a break in the val-
ues, where there is the last substantial drop in the
eigenvalues. The number of factors prior to this drop
represents the number of factors to be extracted. Figure
1 shows the plot of eigenvalues from the principal axis
factor analysis of the 20 items from the UCLA Loneliness
Scale. Clearly, there is a substantial drop in the
eigenvalues after Factor 2, suggesting that two factors
should be extracted.

Use of this procedure has been criticized by a number
of writers due to its subjectivity (e.g., Kaiser, 1970). In
some cases, there may be no clear break in the
eigenvalues, with a linear decline in the values occurring
from the largest to the smallest factor. This can occur, for
example, where several factors are extracted on which
pairs of measures load highly. However, as discussed by
Fabrigar et al. (1999), studies have indicated that exam-
ining the scree plot for breaks provides a reasonably
accurate indication of the number of factors.

A fourth procedure that appears to perform better
than the scree test in determining the number of factors
is termed a parallel analysis (see discussion by Reise,
Waller, & Comrey, 2000). This is a variant on the scree
test, where one also plots the eigenvalues derived from
factoring a completely random set of data involving the
same number of items and research participants. The
number of factors to extract is indicated by the point at
which the eigenvalues for the actual data drop below the
eigenvalues for the random data. Unfortunately, neither
SPSS nor SAS provide this information in the context of
plotting the eigenvalues from a factor analysis. Reise
et al. (2000, pp. 290-291) describe how one can obtain a
computer program that will generate these random val-
ues and also include the commands to generate the aver-
age eigenvalues.6 Figure 1 presents a plot of these values
for the factor analysis of the loneliness scale items. As can
be seen, the eigenvalues drop below the line defined by
the average eigenvalues from the random data for three
or more factors. Therefore, these results also suggest
that two factors should be extracted for the loneliness
scale.7

Factor Rotation

Rotation of the factors involves reorienting them or
altering the location of the factors in the dimensional
space to improve the interpretability of the results. Two
types of rotations can be conducted. An orthogonal rota-
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tion involves rotating the factors that have been
extracted, with the constraint that the factors continue
to be uncorrelated with one another (i.e., kept at right
angles to one another when the results are plotted). Of
the 88 exploratory factor analyses that extracted two or
more factors published in PSPB during the years 1996,
1998, and 2000, 46 (52%) conducted an orthogonal
rotation of the extracted factors. A second type of rota-
tion is an oblique rotation, wherein the constraint that
the factors be uncorrelated with one another is relaxed.
Twenty of the 88 factor analyses (23%) conducted an
oblique rotation of the extracted factors. Eight of the
analyses (9%) did not involve a rotation of the extracted
factors, and the remaining analyses (14, or 16%) failed
to indicate which type of rotation was used.

Each type of rotation will be described below. The
rotation procedures will be illustrated with data from the
factor analysis of the UCLA Loneliness Scale described
above.

Orthogonal rotation. It is important to realize that the
original location of the factors prior to rotation is com-
pletely arbitrary. As was noted previously, factors are
extracted so as to maximize the variance in the measures
that is accounted for by each succeeding factor. There
are an infinite number of orientations of the factors that
account for the data (i.e., the association among the vari-
ables) equally well. To illustrate this point, the compo-
nents and factors shown in Table 1 were rotated using
the Varimax procedure. This is the orthogonal rotation
procedure that is recommended by Fabrigar et al.
(1999) and that was used by all the investigators who con-
ducted orthogonal rotations published in PSPB. The
Varimax procedure attempts to achieve “simple struc-
ture,” wherein each of the measures tends to load highly

on some of the factors and have low loadings on the
other factors. As the “Varimax” name implies, such a pat-
tern of loadings will tend to maximize the variance of the
squared loadings on any given factor.

The results of the Varimax rotation of the principal
components and principal factors are presented in
Table 2. These loadings along with the original
unrotated loadings are plotted in Figure 2; each dot in
the figure indicates the location of one of the items in
the two-dimensional space. The dashed axes show the
orientation of the original unrotated factors, with the
factor number indicated in parentheses. Solid axes indi-
cate location of the Varimax rotated factors. From this
plotting of the two sets of factors one can see how the
location of the original factors is rotated to arrive at the
final Varimax orientation of the factors.

A common error made by investigators involves
reporting the variance explained by the factors before
and after rotation. Table 3 presents information on the
variance in the 20 items explained by both the unrotated
components and factors presented in Table 1 and the
Varimax rotated components and factors presented in
Table 2. In calculating the variance explained by each
component or factor, it is important to recognize that
the loadings represent correlations between each mea-
sure (item) and the respective component or factor.
Therefore, the variance explained by a factor is com-
puted by squaring the loadings on the factor (compo-
nent) and summing them together and then dividing
that value by 20 (the total variance in the measures) to
convert that value to a proportion. For the unrotated fac-
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Figure 1 Plot of the eigenvalues from the factor analysis of the loneli-
ness scale items.

TABLE 2: Varimax Rotated Factor Loadings From the Principal
Components and Principal Axis Factoring Analyses

Item Component 1 Component 2 Factor 1 Factor 2

1 .11 .68 .16 .60
2 .71 .17 .65 .20
3 .55 .43 .53 .42
4 .68 .25 .64 .26
5 .21 .67 .24 .61
6 .19 .69 .23 .62
7 .64 .30 .60 .31
8 .58 .20 .51 .22
9 .12 .62 .17 .53

10 .25 .69 .27 .64
11 .67 .17 .61 .20
12 .70 .18 .65 .20
13 .63 .37 .60 .37
14 .68 .35 .65 .35
15 .35 .53 .35 .48
16 .39 .58 .39 .55
17 .44 .05 .35 .10
18 .63 .21 .57 .23
19 .24 .70 .26 .66
20 .28 .70 .29 .66
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tors, these values are identical to the eigenvalues for the
two factors presented in Figure 1.

Two important aspects of the results presented in
Table 3 should be noted. First, both the unrotated and
rotated factors are uncorrelated with one another, given
that an orthogonal rotation was conducted. Therefore,
the factors do not overlap in the variance they explain in
the items that were analyzed. Second, the total variance
in the items that is explained by the two unrotated and
the two rotated factors is identical. So, for example, a
total of 42% of the variance in the loneliness scale items
is accounted for by the two Principal Axis factors that
were extracted both before and after rotation. Thus, with
rotation there is no change in the variance explained by
the factors. However, the variance explained by each fac-
tor is changed dramatically. For the unrotated solution,
Factor 1 accounted for 86% of the explained variance,
whereas Factor 2 accounted for 14% of the explained
variance. Following the Varimax rotation, Factor 1
accounted for 52% of the explained variance, whereas
Factor 2 accounted for 48% of the explained variance. A
consequence of rotation is to spread the explained vari-
ance from the first factor, which always appears to be the
most important given the method of factor extraction
that is used, to later factors. Therefore, the variance
explained by the factors prior to rotation indicates noth-
ing about their importance following rotation.

Researchers who conduct an exploratory factor analy-
sis and subsequently conduct an orthogonal rotation of
the factors, such as Varimax, need to report the variance
explained by the factors both before and after rotation.
Of the 46 exploratory factor analyses reported in PSPB

during the years 1996, 1998, and 2000 that used a
Varimax rotation, none of the reports indicated the vari-
ance explained by the factors after rotation. Because the
interpretation of the factors is based on the rotated solu-
tion, the variance explained by the factors after rotation
should be reported. It should be noted that both SPSS
and SAS report the variance explained by the extracted
factors both before and after an orthogonal rotation.

Oblique rotation. As noted above, an oblique rotation
allows the rotated factors to be correlated with one
another. One consequence of such a rotation is that the
resultant factors overlap to some degree in the variance
they explain in the measures that are being analyzed. In
essence, the resultant factors reflect predictor variables
that are not independent of one another.

Writers such as Fabrigar et al. (1999) recommend that
investigators use procedures such as Promax when con-
ducting an oblique rotation. The reason is that this pro-
cedure initially conducts a Varimax rotation and then
relaxes the constraint that the factors are uncorrelated
with one another to improve the fit to simple structure. If
it is the case that factors that are uncorrelated (or nearly
so) fit the data well, then this rotation will result in fac-
tors that are close to orthogonal to one another. Another
oblique rotation procedure recommended by Fabrigar
et al. (1999) is Direct Quartimin, which is equivalent to a
Direct Oblimin rotation with the delta parameter (which
controls the level of factor correlation that is permitted)
set at 0. Of the 20 exploratory factor analyses published
in PSPB that conducted an oblique rotation of the
extracted factors, two (10%) used the Promax proce-
dure. Eight of the remaining analyses (40%) used the
Oblimin procedure. Unfortunately, none of these inves-
tigators reported the value of the delta parameter that
they used. Finally, 10 of the factor analyses (50%) did not
indicate which oblique rotation procedure was used.

To illustrate the use of an oblique rotation, consider
the factor analysis of the UCLA Loneliness Scale pre-
sented above. The results of the Varimax rotation of the
two factors derived from the loneliness scale shown in
Figure 2 were not consistent with simple structure. That
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Figure 2 Plot of the factor loadings following a Varimax rotation,
with the original factor prior to rotation indicated.

TABLE 3: Variance Explained by the Unrotated and Varimax Ro-
tated Factors

Principal Components Principal Axis Factors

Factor Unrotated Rotated Unrotated Rotated

1 39.34 24.82 36.56 22.09
2 8.61 23.13 5.74 20.21
Total 47.95 47.95 42.30 42.30
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is, the factors are not oriented so that the items tend to
load highly on one factor and near zero on the other fac-
tor. Instead, most items appear to have positive loadings
on both factors. This pattern of loadings suggests that an
improvement in the orientation of the factors relative to
the items could be achieved if the factors were not forced
to be at right (90°) angles to one another. Therefore, the
loadings on the two factors for the loneliness scale were
rotated using the Promax procedure.

The results of an oblique rotation using the Promax
procedure resulted in a correlation of .63 between the
two principal components and .70 between the two fac-
tors derived from the Principal Axis Factoring analysis.
Due to the correlation between the factors following an
oblique rotation, both the SPSS and SAS programs
report two matrices. The Factor Structure matrix pro-
vides the correlation between each of the measures and
the factors that have been extracted and rotated; this is,
of course, what we typically think of as factor loadings.
However, given that the two factors are correlated with
one another, there may be overlap in these loadings.
Therefore, the second matrix, termed the Factor Pattern
matrix, is designed to indicate the independent relation-
ship between each measure and the factors. One can
think of the values reported here as being equivalent to
standardized regression coefficients, where the two fac-
tors are used as predictors of each measure.

Table 4 reports the Factor Structure matrix for the
Principal Components and the Principal Axis Factoring
analyses, whereas Table 5 reports the Factor Pattern
matrix for these two analyses of the loneliness scale. As
can be seen in Table 4, there were strong positive correla-
tions between each of the items and the factors. The Fac-
tor Pattern matrix shown in Table 5 is more useful in
interpreting the meaning of the factors. So, for example,
items 1, 5, 6, 9, 10, 15, 16, 19, and 20 appear to load more
highly on Factor 2, whereas the remaining items appear
to load more highly on Factor 1. Factor 1 represents
items worded in a negative or lonely direction, whereas
Factor 2 represents items loaded in a positive or non-
lonely direction. Thus, it appears that these two factors
reflect a method factor corresponding to the direction
of item wording. (See Russell [1996] for a further discus-
sion of the factor structure underlying the loneliness
scale.)

Figure 3 shows a plot of the factor loadings based on
the Varimax rotation, which is identical to that shown in
Figure 2. Now, however, I have also plotted the location
of the two factors derived from the Promax rotation,
shown by the dashed lines in Figure 3; the factor num-
bers are indicated in parentheses. As can be seen, these
factors are no longer at right angles (90°) to one
another, reflecting the correlation between the factors.

Factor Scores

It is often the case that an exploratory factor analysis is
conducted as a data reduction procedure. As noted pre-
viously, 51% of the factor analyses that appeared in PSPB
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TABLE 4: Factor Structure Matrices Following the Promax Rotation
From the Principal Components and Principal Axis Fac-
toring Analyses

Item Component 1 Component 2 Factor 1 Factor 2

1 .34 .68 .38 .61
2 .73 .39 .68 .43
3 .67 .59 .65 .59
4 .72 .46 .69 .48
5 .42 .70 .45 .65
6 .41 .72 .45 .66
7 .71 .49 .67 .51
8 .61 .38 .56 .40
9 .32 .62 .35 .56

10 .47 .74 .50 .70
11 .69 .38 .64 .41
12 .72 .40 .67 .43
13 .72 .56 .70 .57
14 .76 .56 .74 .57
15 .50 .61 .50 .58
16 .56 .68 .57 .65
17 .43 .19 .37 .23
18 .66 .40 .61 .43
19 .46 .74 .49 .71
20 .50 .75 .52 .72

TABLE 5: Factor Pattern Matrices Following the Promax Rotation
From the Principal Components and Principal Axis Fac-
toring Analyses

Item Component 1 Component 2 Factor 1 Factor 2

1 –.15 .78 –.11 .69
2 .79 –.10 .74 –.09
3 .49 .28 .46 .27
4 .71 .01 .68 .00
5 –.03 .72 –.01 .66
6 –.05 .75 –.03 .69
7 .66 .08 .62 .08
8 .61 –.01 .55 .02
9 –.11 .70 –.07 .60

10 .02 .73 .02 .69
11 .74 –.08 .68 –.06
12 .77 –.08 .73 –.08
13 .61 .18 .59 .16
14 .67 .13 .66 .11
15 .20 .49 .20 .44
16 .23 .53 .22 .50
17 .51 –.13 .40 –.05
18 .68 –.02 .62 .00
19 –.01 .75 –.01 .72
20 .04 .72 .03 .70
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during the 3 years being examined were conducted for
this reason. So, for example, an investigator may have
included a number of measures to assess a certain type of
variable, such as affect, and he or she may want to con-
duct an exploratory factor analysis to identify the dimen-
sion(s) underlying these measures. Once these dimen-
sions are identified, the investigator will typically create
scores to represent the factor or factors, which can in
turn be used in subsequent analyses of the data. Such
scores should be more reliable than the original mea-
sures and also should yield scores that are less highly cor-
related with one another than the original measures.

Although such a factor score may be more reliable, it
should be noted that it is still a measured variable. That
is, this computed score is not identical with the factor or
latent variable. As a consequence, the results of any sub-
sequent analyses with this new measured variable will be
attenuated by random error in the factor score. An alter-
native approach is to conduct subsequent analyses
involving the set of variables using latent variable model-
ing procedures, which remove the biasing effects of ran-
dom measurement error from the analyses.

If an investigator insists on computing factor scores,
how should these scores be created? The factor analysis
procedures included in the SPSS and SAS programs pro-
vide a number of different methods for computing fac-
tor scores. I recommend, however, that researchers
choose a simpler strategy of identifying the measures or
items that load highly on a given factor and summing
together scores on those measures to create a score
reflecting that factor. (One would, of course, reverse

scores on a measure that loaded negatively on the factor
prior to creating such a score.) In using this procedure
the investigator is losing the information provided by the
loadings of the measures on the factors. However, the
score created in the manner I am suggesting will corre-
late highly with the various “weighted” scores provided
by the factor analysis programs. Given that the factor
score weights that are derived from a factor analysis are
likely to be sample-specific and therefore not replicable,
a more reasonable strategy involves simply identifying
the measures or items that load highly on a factor and
summing them together.8

Recommendations

On the basis of this review and analysis of exploratory
factor analyses that have been reported in PSPB during
the past 5 years, a number of recommendations can be
formulated. These are detailed in the following sections.

Study design. There appears to be a general need to
increase the size of the samples. Unless a researcher can
demonstrate a high level of communality (.60 or
greater) for the measures used in a factor analysis, a sam-
ple of at least 100 cases should be used. Investigators also
need to ensure that they have a sufficient number of
measures relative to the number of factors that are
derived from the analysis; at least three measures per fac-
tor is required, and preferably four or more measures
per factor should be included in the analysis.

Factor extraction. Although many researchers believe
there is little difference between Principal Components
analysis and Principal Axis Factoring in the results that
are obtained, the findings reported by Widaman (1993)
indicate that results based on Principal Axis Factoring
are more accurate in reproducing the population load-
ings. Therefore, this appears to be the preferable
method of factor extraction.

Determining the number of factors. There is no simple
answer to the problem of determining the number of
factors to extract, given that available computer pro-
grams do not provide results for random data sets as
described by Reise et al. (2000). The default method of
extracting factors with eigenvalues ≥ 1.0 is clearly not
accurate. Although the scree test is more accurate, the
subjectivity of this criterion is problematic. Conducting a
parallel analysis using random data sets is recom-
mended, although that will require using the program
developed by Reise et al. (2000) to generate the required
data.

Factor rotation. Although orthogonal rotations simplify
the presentation and interpretation of factor analysis
results, they often do not lead to simple structure due to
underlying correlations between the factors. I therefore
agree with the recommendation of Fabrigar et al. (1999)
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Figure 3 Plot of the factor loadings following a Promax rotation, with
the location of the factors following a Varimax rotation also
indicated.
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that investigators conduct an oblique rotation such as
Promax. This procedure first conducts an orthogonal
Varimax rotation and then allows correlations between
the factors in an attempt to improve the fit to simple
structure. Therefore, if the factors are in fact
uncorrelated with one another, that will be revealed by a
Promax rotation.

Factor scores. Finally, if an investigator insists on com-
puting scores to represent the factors, I recommend that
a simple unweighted procedure be used to derive scores
to represent factors that are discovered to underlie a set
of measures. In that way one is not relying on the
replicability of the weights that are derived from a factor
analysis on a single sample. Alternatively, latent variable
modeling procedures may be used in subsequent analy-
ses to provide results involving the underlying dimen-
sions or factors that are not attenuated by random mea-
surement error.

CONFIRMATORY

FACTOR ANALYSIS

Confirmatory factory analysis (CFA) is designed to
assess how well a hypothesized factor structure “fits” the
observed data. Unlike exploratory factor analysis, the
researcher has an explicit prediction concerning both
the number of factors that underlie a set of measures and
which measures load on the hypothesized factor(s).
These factor loadings are equivalent to the factor pat-
tern coefficients described above in the context of
exploratory factor analysis, reflecting unique relation-
ships between each measured variable and the underly-
ing factor(s). Once loadings of the measures on the fac-
tors are derived and (if an oblique factor structure is
hypothesized) correlations among the factors are esti-
mated, a chi-square goodness-of-fit test is conducted. If
the hypothesized factor model fits the data, then the
goodness-of-fit test will be nonsignificant. Therefore, in
a reversal of the statistical logic that is typically
employed, one’s hope is to find a nonsignificant result.

In a confirmatory factor analysis, measures typically
have estimated non-zero loadings on their respective fac-
tors and zero loadings on the other factors. To illustrate
this point, Table 6 presents the factor loading matrix for
items from the locus of causality and stability subscales
from the Revised Causal Dimension Scale (McAuley,
Duncan, & Russell, 1992). In conducting a confirmatory
factor analysis for that measure, loadings of the items on
the factors would be estimated where there are “Xs” in
Table 6. So, for example, the three items designed to
measure locus of causality would be allowed to load on
the Locus factor. Their loadings on the Stability factor
would be fixed at 0. This contrasts with the case of an
exploratory factor analysis, where the items would have

non-zero loadings on all the factors that were found to
underlie the measures. So, for example, if two factors
were extracted via an exploratory factor analysis proce-
dure for these six items, each item would have a loading
on both of the factors.

Maximum likelihood estimation is the method typi-
cally used to estimate a confirmatory factor model.9

Using this method, programs such as LISREL (Jöreskog &
Sörbom, 1996) or EQS (Bentler, 1995) will generate a set
of initial factor loadings or start values for the hypothe-
sized model. The fit of these values to the data is then
evaluated based on the following equation:

F = {log(det[Σ])} + {trace(S * Σ–1)} – {log(det[S])} – p,

where Σ represents the reproduced covariance matrix
(or what the covariances among the measures should be
based on the factor model), S represents the observed
covariance matrix based on the data, and p represents
the number of measured variables. Once the fit of the
initial factor model to the data is evaluated, factor load-
ings are adjusted based on lack of fit of the model to the
data and a new value of F is computed. This continues
until F converges or changes a minimal amount from
one iteration to another. At that point, the chi-square sta-
tistic for the final factor model is computed, based on the
following formula:

χ2 = (N – 1)F,

where N represents the number of cases included in the
analysis. The degrees of freedom associated with the chi-
square statistic are computed from the following formula:

df = 1/2(p)(p+1) – t,

where t represents the number of free parameters esti-
mated in testing the hypothesized factor model. These

1638 PERSONALITY AND SOCIAL PSYCHOLOGY BULLETIN

TABLE 6: Factor Loading Matrix for the Causal Dimension Scale

Item Locus Stability

L1 X O
L2 X O
L3 X O
S1 O X
S2 O X
S3 O X

NOTE: L1, L2, and L3 represent the three items from the Locus scale;
S1, S2, and S3 represent the three items from the Stability scale. Load-
ings of the items on the factors were estimated where an “X” is included
in the factor-loading matrix, whereas no loading was estimated where
an “O” is indicated in the factor-loading matrix.
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free parameters include factor loadings, random error
terms, and correlations or covariances among the factors.

An Example of a CFA

To illustrate the use of a confirmatory factor analysis,
the model for the Revised Causal Dimension Scale
shown in Table 6 was tested based on data from 380 col-
lege students analyzed by McAuley et al. (1992). The
covariance matrix that was used in the analyses is pre-
sented in Table 7, with the correlations among the items
shown above the diagonal of the matrix. The initial fac-
tor model specified loadings of the items on the two fac-
tors as shown in Table 6, with the factors specified as
uncorrelated (orthogonal). This hypothesized model
was fit to the variances and covariances among the vari-
ables shown in Table 7 using the maximum likelihood
procedure in LISREL 8.3 (Jöreskog & Sörbom, 1996).
Table 8 presents the start values for the factor loadings
along with the final estimates. On the basis of the start
values, the value of the fit function (F) was .10468, result-
ing in χ2(9, N = 380) = 39.68, p < .001. After iteration to
the final estimates of the factor loadings, the value of F
was .03810, resulting in χ2(9, N = 380) = 14.44, p = .11.
This latter result indicates that the model fits the data,
given that the chi-square statistic is nonsignificant.

As noted above, this first model specified that the fac-
tors were orthogonal, or that the correlation between
the two factors was zero. An obvious modification of this
model that may improve the fit to the data would involve
permitting these two factors to be correlated. Therefore,
a second model that allowed the two factors to be corre-
lated (i.e., an oblique factor structure) was fit to these
data. In this model, I allowed the program to generate a
value for the correlation between the factors that maxi-
mizes the fit of the model to the data. The results for this
second model indicated that it also fit the data well, χ2(8,
N = 380) = 14.39, p = .07. However, the correlation
between the two factors was nonsignificant, r = .02.

Because the second model involves estimating an
additional parameter (i.e., the correlation between the

factors), there are eight degrees of freedom. Bentler and
Bonett (1980) noted that in the case of two nested mod-
els (i.e., where one model involves freeing up one or
more parameters in the second model), the difference
in the chi-square statistics for the two models is itself dis-
tributed as a chi-square. Therefore, we can evaluate the
effect of adding this parameter (correlation) between
the two factors to the fit of the model by computing a chi-
square difference test. The result is χ2(1, N = 380) = .05,
p = .82, indicating that adding the correlation between
these two factors did not lead to a significant improve-
ment in the fit of the model to the data.

Use of CFA in PSPB

Nineteen of the 156 factor analyses (12%) reported in
PSPB during the years 1996, 1998, and 2000 included a
confirmatory factor analysis. There was clear evidence
that the use of this statistical method is increasing over
time. Of the 85 articles that reported a factor analysis,
none of the 28 articles published during 1996 included a
confirmatory factor analysis, whereas 2 of the 23 articles
published in 1998 (9%) and 10 of the 34 articles pub-
lished in 2000 (29%) used this statistical method.

As noted above, to conduct a confirmatory factor
analysis one must have a clear prediction as to the factor
structure underlying a set of measures. In the case of 10
of these 19 CFAs (53%), the investigators were testing
the fit of a hypothesized factor structure to a set of mea-
sures. The remaining 9 CFAs involved the testing of a
measurement model prior to conducting an analysis of a
structural equation model. Nearly half of these analyses
(9 of 19, or 47%) were conducted using the LISREL pro-
gram, with 7 of the 19 analyses (37%) using the EQS pro-
gram; the remaining 3 analyses did not indicate the pro-
gram that was used. Maximum likelihood estimation was
used for 8 of the 19 analyses (42%). The remaining 11
analyses (58%) did not indicate the estimation method
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TABLE 7: Covariances and Correlations Among the Items

L1 L2 L3 S1 S2 S3

L1 5.49 .44 .36 .13 .04 –.02
L2 2.23 4.71 .45 .05 –.01 –.07
L3 1.55 1.80 3.40 –.04 –.06 –.05
S1 .70 .28 –.17 5.67 .47 .39
S2 .21 –.03 –.24 2.41 4.58 .36
S3 –.09 –.26 –.16 1.69 1.39 3.36

NOTE: Variances of the items are shown on the diagonal, with
covariances among the items shown below the diagonal and correla-
tions among the items shown above the diagonal. L1, L2, and L3 repre-
sent the three items from the Locus scale; S1, S2, and S3 represent the
three items from the Stability scale.

TABLE 8: Start Values and Final Estimates of the Factor Loadings
for the Causal Dimension Scale

Start Values Final Estimates

Items Locus Stability Locus Stability

L1 .57 .00 .59 .00
L2 .84 .00 .74 .00
L3 .58 .00 .61 .00
S1 .00 .76 .00 .72
S2 .00 .65 .00 .66
S3 .00 .53 .00 .54

NOTE: L1, L2, and L3 represent the three items from the Locus scale;
S1, S2, and S3 represent the three items from the Stability scale. The
standardized factor loadings (i.e., correlations between the items and
the factors) are presented.
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that was used. Finally, despite the fact that the APA Publi-
cation Manual indicates that the correlation or
covariance matrix that was analyzed should be reported,
only 11 of the 19 analyses (58%) included this matrix.

Evaluating Goodness-of-Fit

An important issue in the literature on confirmatory
factor analysis concerns the evaluation of model fit to the
data. One problem involves the impact of sample size. As
can be seen from the formula for computing the chi-
square statistic, the number of cases employed in the
analysis can affect one’s conclusion concerning model
fit. For example, the model for the Revised Causal
Dimension Scale shown above was found to fit the data
based on a nonsignificant chi-square statistic. That result
was obtained for a sample of 380 cases. What would the
result have been if I had used data from a sample of 1,000
cases? Assuming that the same value of the fit function
(F) would have resulted (i.e., .03810), then the chi-
square statistic would have increased to 38.06, which is
highly significant with 9 degrees of freedom, p < .001.
Therefore, I would have concluded that the hypothe-
sized factor model did not fit the data.

Due to the influence of sample size and other charac-
teristics of the data (such as non-normality) on the chi-
square goodness-of-fit test, a variety of measures of
model fit have been developed. These efforts have been
focused on developing indicators of model fit that are
relatively unaffected by variations in the size of the sam-
ple that is used in testing a model and non-normality of
the data. As a consequence, programs for conducting
confirmatory factor analysis now report a large number
of indicators of model fit in addition to the chi-square
test. For example, LISREL 8.3 reports 20 measures of
model fit, whereas EQS 5.7 reports 10 measures of model
fit. Hu and Bentler (1998) provide a description of these
different measures of model fit, along with the formulas
used in computing each statistic. Which of these indica-
tors of fit should be used in evaluating your factor
model?

A number of studies have appeared over the past two
decades evaluating the extent to which these various
measures of model fit are affected by variations in sam-
ple size and normality of the data (for a review, see Hu &
Bentler, 1998). Recently, Hu and Bentler (1998, 1999)
have examined the sensitivity of these measures of fit to
miss-specification of the factor model. That is, if an
incorrect factor model is being tested, how likely is it that
a measure of model fit will reject that model? On the
basis of an extensive Monte Carlo analysis, Hu and
Bentler (1999) recommend a “two criteria” strategy in
evaluating model fit. First, they advise using the stan-
dardized root mean square residual (SRMSR) in evaluat-
ing the model. In computing this statistic, S (the matrix

being analyzed) and Σ (the relationships among the vari-
ables based on the model) are first standardized or
converted to a correlation matrix and then the residual
matrix (i.e., the difference between S and Σ) is com-
puted. The average squared residual is calculated as an
indication of how well the model fits the data, with a
value of .08 or less indicating a good fit to the data. Sec-
ond, they recommend the use of one of several fit statis-
tics, such as the Tucker-Lewis Index (TLI) (Tucker &
Lewis, 1973), Bollen’s (1989) Index (IFI), the Compara-
tive Fit Index (CFI) (Bentler, 1990), the Relative
Noncentrality Index (RNI) (McDonald & Marsh, 1990),
Gamma Hat (Steiger, 1989), McDonald’s (1989) Cen-
trality Index (MFI), or the Root Mean Square Error of
Approximation (RMSEA) developed by Steiger and
Lind (1980). Of importance, Hu and Bentler (1999) also
indicate that the criteria used in evaluating model fit for
many of these latter statistics should be increased. For
example, for the TLI, IFI, CFI, RNI, and Gamma Hat, the
widely used criterion of .90 or greater should be
increased to .95 or greater. For MFI, the criterion should
be .90 or greater, and for RMSEA, the criterion should be
.06 or lower.10

To illustrate these measures of fit, Table 9 presents the
results for the factor model of the Revised Causal Dimen-
sion Scale that was tested above. As can be seen, the val-
ues for the various fit indices that range from 0 to 1 (e.g.,
TLI, IFI, CFI, MFI) were all greater than .95 and were
nearly identical in value. The SRMSR (average squared
residual correlation) for the model was .04. Finally, the
value of RMSEA was also .04, which is below the criterion
of .06 recommended by Hu and Bentler (1999).

It should be noted that most of the studies (79%)
reporting confirmatory factor analyses in PSPB during
the years 1998 and 2000 reported indicators of model fit
beyond the chi-square test of significance. As can be seen
in Table 10, these researchers used some of the fit indices
recommended by Hu and Bentler (1998, 1999). How-
ever, investigators also report other indices (such as the
normed fit index and the goodness-of-fit index) that
were not recommended by Hu and Bentler. Further-
more, none of the researchers reported the SRMSR or
used .95 as the criterion for model fit. Clearly, the results
reported by Hu and Bentler (1999) indicate the need to
use more stringent criteria in evaluating model fit.

Sample Size

Another issue that arises in conducting a confirma-
tory factor analysis involves sample size. The statistical
theory underlying these methods is based on the
assumption that the data are drawn from large samples
of the population; how large is large enough? Confirma-
tory factor analyses reported in PSPB during the years
1998 and 2000 used from 51 to 547 cases in the analyses
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(M = 241 participants). Three of the analyses (16%)
involved samples of fewer than 100 cases, and 5 analyses
(26%) involved from 100 to 199 cases.

Early research on the effect of sample size indicated
that a minimum of 100 cases was required for accurate
results (Boomsma, 1982), with samples of 200 or more
cases being preferable. In the context of testing a “true”
model (i.e., where the sample was drawn from a popula-
tion in which the factor model was correct), the chi-
square statistic was found to be inflated for samples of
fewer than 100 cases. Subsequently, it was argued that
the sample size should be evaluated in the context of the
number of parameters (i.e., factor loadings, error terms)
being estimated in the model, much like the N:k ratio in
regression. For example, Bentler (1990) recommended
that a sample of at least 5 cases per parameter be used in
testing the model.

A recent study by Jackson (2001) directly examined
the impact of sample size and number of parameters
being estimated on the results of a confirmatory factor
analysis. He conducted analyses for samples that ranged
in size from 50 to 800 cases. The results of his Monte
Carlo analysis clearly indicated that it was sample size

and not the number of parameters being estimated that
was important. Furthermore, the effect of sample size on
different indicators of model fit varied. So, for example,
the CFI was less affected by sample size than other mea-
sures of model fit. Also, average loading of the variables
on the factors, termed “indicator reliability” or “satura-
tion,” moderated the effects of sample size on the results.
That is, sample size was less important for model fit when
the average factor loading was .80 versus .60.11

In conclusion, as was true in the case of exploratory
factor analysis (see MacCallum et al., 1999), it is possible
to derive accurate results from a confirmatory factor
analysis using a sample of fewer than 100 cases if the aver-
age loading of the measures on the factors is high. Fur-
thermore, with small samples it appears wise to examine
an indicator of model fit such as the CFI that does not
appear to be as strongly influenced by sample size as
other indicators of model fit.

Non-Normality

An assumption that underlies maximum likelihood
estimation of confirmatory factor models is that the dis-
tribution of the data is multivariate normal. As noted by
Micceri (1989), very few actual data sets meet this
assumption. The typical impact of violations of this
assumption is to increase the value of the chi-square sta-
tistic and the standard errors associated with the parame-
ter estimates. As noted by Bentler (personal communica-
tion, August 5, 2001), non-normality may result in a
decrease in the chi-square statistic if the tails of the distri-
bution are too small relative to a normal distribution.
The parameter values themselves are typically not
affected. To address this problem, Browne (1984) devel-
oped the asymptotically distribution free (ADF) estima-
tion method, which is available in programs such as
LISREL or EQS. Unfortunately, this method requires
relatively large samples (more than 1,000 cases) to
derive accurate estimations of model fit (Curran, West, &
Finch, 1996; Hu, Bentler, & Kano, 1992; Muthén &
Kaplan, 1992). Recently, Yuan and Bentler (1999) have
developed an F statistic that is a modification of the ADF
estimation developed by Browne (1984). As is true of the
chi-square statistic for evaluating model fit, a non-
significant F value indicates that the model fits the data.
Analyses by Bentler and Yuan (1999) indicate that this F
statistic performs well in the context of non-normality
for samples as small as 90 cases. This new F statistic will be
implemented in Version 6 of the EQS program. Using a
preliminary or beta version of that program, the model
for the Revised Causal Dimension Scale that was ana-
lyzed above was tested. As expected, the result of the
Yuan-Bentler test was nonsignificant, F(9, 371) = 1.39,
indicating that the model fit the data.
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TABLE 9: Measures of Fit for the Two-Factor Model of the Causal Di-
mension Scale

Measure of Fit Value

Standardized Root Mean Square Residual (SRMSR) .04
Tucker-Lewis Index (TLI)a .98
Bollen 89 Index (IFI) .99
Comparative Fit Index (CFI) .99
McDonald (MFI) .99
Root Mean Square Error of Approximation (RMSEA) .04

NOTE: The other two measures of fit recommended by Hu and
Bentler (1998) are not reported by either LISREL 8.3 or EQS 5.7.
a. This measure of fit is referred to as the Non-Normed Fit Index
(NNFI) in LISREL 8.3 or the Bentler-Bonett Nonnormed Fit Index in
EQS 5.7.

TABLE 10: Goodness-of-Fit Indices Reported in Personality and So-
cial Psychology Bulletin Articles

Index No. %

Tucker-Lewis Index 2 10.5
Normed Fit Index 3 15.8
Goodness-of-Fit Index 5 26.3
Adjusted Goodness-of-Fit Index 4 21.1
Comparative Fit Index 14 73.7
χ2/df 6 31.6
Root Mean Square Error of
Approximation (RMSEA) 6 31.6
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Recent work by Bentler and his colleagues also has
focused on developing methods to adjust estimates
derived under maximum likelihood estimation, termed
“robust” estimation. Satorra and Bentler (1994) devel-
oped an adjustment for the extent of non-normality that
can be applied to the chi-square statistics and standard
errors derived under maximum likelihood estimation.
These robust statistics are available in EQS 5.7. To illus-
trate these methods, they were applied to the data from
the analysis of the Causal Dimension Scale presented
earlier. The EQS program first provides a test of
multivariate normality for the data. As expected, these
data were found not to be multivariate normal, Mardia’s
coefficient = 10.67, Z = 10.62, p < .001. Due to the non-
normality of the data, the Satorra-Bentler rescaled chi-
square was 12.98, which is a reduction from the normal-
theory-based value of 14.43. Finally, the standard errors
of the parameters also were adjusted for non-normality.
For example, the standard error for the loading of the
first stability item was reduced from .155 to .144, which in
turn increased the statistical significance of the loading.

Subsequent research has indicated that this adjust-
ment to the chi-square statistic and the standard errors
of the parameters performs well for moderately large
samples (i.e., 250 or more cases) (Bentler & Yuan, 1999;
Fouladi, 2000). However, for smaller sample sizes the
adjustment appears to be too liberal. Therefore, in the
case of smaller sample sizes investigators should employ
the methods developed by Bentler and Yuan (1999) that
will soon be available in EQS 6 to deal with non-
normality.

Missing Data

An important area of recent developments related to
confirmatory factor analysis (and structural equation
modeling more generally) has involved the problem of
missing data. Despite the fact that nearly all research
projects involve missing data on one or more of the mea-
sured variables, only one of the 85 PSPB articles reviewed
for this report made any reference at all to the treatment
of missing data. It seems likely that list-wise deletion of
cases with missing data was used in these factor analyses,
in which the analysis was confined to individuals with
complete data on the measures being factored. Except
for the case where missingness is completely at random,
such an approach to missing data can lead to serious
biases in the results (see discussion by Allison, 2002;
Schafer, 1997; Sinharay, Stern, & Russell, 2001).

Current versions of programs such as Amos
(Arbuckle, 1997) or Mplus (Muthén & Muthén, 1998)
include options for estimating confirmatory factor mod-
els in the context of missing data building on the initial
work by Allison (1987) and Muthén, Kaplan, and
Hollis (1987). Using a method that has been termed

full-information maximum likelihood (FIML) estima-
tion, these procedures evaluate the fit of the factor
model while including data for cases with complete and
partial data on the measured variables (for a review, see
Allison, 2002; Enders, 2001). Monte Carlo studies have
indicated that this procedure provides a more accurate
estimate of model parameters than methods such as the
exclusion of cases with missing data when missingness is
related to one or more of the variables included in the
analysis (see, e.g., Enders & Bandalos, 2001).

Jamshidian and Bentler (1999) have developed an
alternative approach to the estimation of confirmatory
factor models in the context of missing data. They com-
pute estimates of model parameters (e.g., factor load-
ings) that optimize the fit of the model by making use of
the EM (expectation-maximization) algorithm that is
employed in the context of multiple imputation of miss-
ing data (see Allison, 2002; Schafer, 1997; Sinharay et al.,
in press). A recent Monte Carlo analysis by Gold and
Bentler (2000) has indicated that this approach provides
a more accurate estimate of model parameters than
restricting the analysis to cases with complete data. Fur-
thermore, Yuan and Bentler (2000) have demonstrated
how this method can be used to deal with non-normal
missing data. These methods for dealing with missing
data also will be included in Version 6 of the EQS pro-
gram (Bentler, 1995).12

Recommendations

A number of recommendations concerning the use of
confirmatory factor analysis can be formulated based on
both my review of studies in PSPB and recent method-
ological work. These recommendations are detailed
below.

Study design. As was true of exploratory factor analysis,
current literature on sample size and confirmatory fac-
tor analysis indicates that samples of 100 cases or more
should be used. Use of samples smaller than 100 cases
should be justified on the basis of the reliability or satura-
tion of the measures, as indicated by loadings of the mea-
sures on the factors. The number of parameters being
estimated relative to the sample size does not appear to
be important, although investigators should strive to
have at least three measures per factor or latent variable.

Estimation method. Use of maximum likelihood estima-
tion of factor models appears to be justified. However,
investigators should examine their data for violations of
the assumption of multivariate normality. Given that it
appears likely that most data sets will prove not to be
multivariate normal, using some of the techniques to
adjust for non-normality developed by Bentler and his
colleagues appears wise, given that the apparent fit of the
model to the data may be negatively affected by
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non-normality. The new methods developed by Yuan
and Bentler (1999) are currently only available in the
version of the EQS program that will soon be released.
However, past experience has indicated that innovations
introduced in one program for conducting confirma-
tory factor analyses or structural equation modeling are
soon added to other programs. Therefore, we can antici-
pate that these new methods will likely be added to other
programs in the near future.

Evaluating model fit. Recent studies by Hu and Bentler
(1998, 1999) suggest an important new strategy for eval-
uating model fit, involving the use of two fit criteria (i.e.,
the average standardized residual and another criterion
such as the CFI or the RMSEA). Although these results
are contradicted to some degree by the findings
reported by Fan, Thompson, and Wang (1999; see Note
9), their results are already having an impact on the crite-
ria used in evaluating model fit. Their recommendation
that the various fit criteria, such as the CFI, be greater
than .95 has clearly raised the bar, making it more diffi-
cult to obtain results that appear to fit the data.

One result of these more stringent criteria will be that
factors or latent variables will need to be more clearly
defined by the measured variables, with smaller residual
correlations between measures that load on different
factors or latent variables. A recent article by Kenny and
McCoach (2000) is relevant in this regard. They demon-
strate mathematically that the number of variables being
analyzed negatively affects many of the goodness-of-fit
indices. As a consequence, one may need to reduce the
number of items on a scale that is being factored to
obtain results that indicate that the proposed model fits
the data well. Therefore, we may see the evolution of
scales that involve a small set of items that are very tightly
intercorrelated to obtain fit indices greater than .95.

Missing data. Finally, the recent development of meth-
ods to estimate confirmatory factor models in the con-
text of missing data using programs such as Amos,
Mplus, and EQS 6 argues against excluding cases with
missing data in estimating model fit. Although these
methods greatly enhance our ability to estimate models
in the context of missing data, it should be noted that
these methods cannot be used with certain types of mod-
els (e.g., dichotomous measures). Investigators can
employ other methods, such as multiple imputation of
missing data, to address model estimation in the context
of missing data with such nonstandard models (see
Allison, 2002; Sinharay et al., 2001).

CONCLUSIONS

My analysis of the use of factor analysis, both explor-
atory and confirmatory, in PSPB over the past 5 years has
revealed a number of ways in which such analyses can be

improved. There is also clear evidence that the use of
confirmatory factor analysis is increasing, a trend that I
expect will continue to accelerate. Indeed, in many
cases, researchers who have used exploratory factor anal-
ysis to analyze their data have clear predictions regard-
ing the factor structure of the measures. For example, of
the 137 exploratory factor analyses reported in PSPB
during the years 1996, 1998, and 2000, 54 (39%)
involved analyses where investigators had clear predic-
tions regarding the factor structure of the measures
being analyzed. As a consequence, conducting a direct
test of whether the proposed factor model fits data via
confirmatory factor analysis is more appropriate than
conducting an exploratory factor analysis.

The use of confirmatory factor analysis in the context
of testing a hypothesized factor structure for a measure
or set of scales also will permit investigators to address
issues that cannot be easily addressed via exploratory fac-
tor analysis. One can directly compare the fit of a hypoth-
esized factor structure for different groups of partici-
pants in a study. So, for example, models can be tested
that evaluate whether the factor loadings on a measure
vary by sex of the respondent. Such multiple group mod-
els can be extended to conduct an analysis of “structured
means,” wherein the average scores of different groups
of participants (such as men and women or individuals
assigned to different treatment conditions) on the latent
variables or factors are compared. Such an analysis is
essentially equivalent to conducting a t test or an ANOVA
on error-free measures of a dependent variable or vari-
ables. Descriptions of how to conduct such multiple
group confirmatory factor analyses are provided in the
various textbooks on structural equation modeling, such
as the books by Byrne (1994, 1998, 2001), Kelloway
(1998), Kline (1998), Maruyama (1997), Raykov and
Marcoulides (2000), or Schumacker and Lomax (1996).
Finally, it is also possible to conduct a confirmatory
second-order factor analysis, wherein one tests the ability
of a higher order factor or factors to account for the cor-
relation between first-order factors. An example of such
an analysis is provided by our work with the Social Provi-
sions Scale, a multidimensional measure of social sup-
port (Cutrona & Russell, 1987; see Marsh & Hocever,
1985, for a discussion of how to test such models).

Methods for conducting confirmatory factor analysis
or structural equation modeling are evolving rapidly.
One indication of the interest in these methods is the
development of the journal Structural Equation Modeling,
along with the large number of articles relevant to these
methods that are published in Psychological Methods.
Investigators who use these methods need to keep up to
date on their evolution, given the rapid pace of change.
Clearly, our ability to deal with problems such as non-
normality of the data, small sample sizes, or missing data
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has been enhanced by recent developments, which in
turn should increase the utility of these methods in
addressing the empirical issues that are of interest to
investigators who publish in PSPB. I therefore anticipate
that the trend of increasing use of confirmatory factor
analysis in articles published in PSPB and other personal-
ity and social psychology journals will continue, which in
turn should enhance the quality of the research in these
journals.

NOTES

1. To evaluate my accuracy in detecting articles in PSPB over these
3 years that included a factor analysis, an independent review was con-
ducted by a graduate student for the months January through April
1996, May through August 1998, and September through December
2000. For the 115 articles published in Personality and Social Psychology
Bulletin during those months, agreement between the two raters was
90% and the kappa coefficient was .72 (p < .001). I would like to thank
Young Kim for helping with the reliability coding.

2. Technically speaking, principal components analysis does not
represent a factor analysis, given that the method does not involve the
assumption that you are extracting common factors underlying a set of
measures (see discussion by Fabrigar, Wegener, MacCallum, &
Strahan, 1999; Velicer & Fava, 1998). Instead, the goal of the analysis is
the exact mathematical transformation of a set of measures into a
smaller set of measures or components.

3. You can also input your own communality estimates using Proc
Factor in SAS.

4. The expected correlation between two measures based on the
loadings of these measures on Factor 1 is calculated by multiplying the
two loadings together. So, for example, if measure 1 loads .45 on Factor
1 and measure 2 loads .50 on Factor 1, then the expected correlation
based on the influence of that factor on each measure is .45*.50, or
.225.

5. Occasionally one will hear the expression that “the reliable fac-
tors were extracted.” This refers to the relationship between coefficient
alpha and the eigenvalue associated with the components extracted as
part of a principal components analysis. Specifically, the relationship is
as follows: α = (ε – 1)/ ε, where ε represents the eigenvalue for a specific
component. Based on this formula, the eigenvalue must be greater
than 1 for the reliability of the corresponding factor to be positive.
Therefore, another justification for the “eigenvalue ≥ 1” criterion is
that components with eigenvalues less than 1 are unreliable.

6. As indicated in the article by Reise, Waller, and Comrey (2000),
the program for computing the random eigenvalues can be down-
loaded from the Web site http://lib.stat.cmu.edu/R/CRAN/#source.
The program that I used to generate the average eigenvalues that are
plotted in Figure 1 is the following: random.eig <– matrix(0,nrow =
100, ncol = 20) for (i in 1:100) {random.data <– matrix(rnorm(487 *
20), nrow = 487, ncol = 20) random.eig[i, ] <– eigen(cor(ran-
dom.data)) $values} average.eig <– apply(random.eig,2,mean). In this
code, “487” represents the number of cases in the analysis and “20” rep-
resents the number of measures being factored. Please note that the
program is case sensitive; do not use capital letters. Once this program
runs, entering “average.eig” will lead to the results being listed.

7. Two other approaches to identifying the number of factors to
extract are often discussed (Fabrigar et al., 1999). Velicer (1976), in the
context of a principal components analysis, proposed an analysis of the
average partial correlations computed after removing the influence of
the extracted components from the original correlation matrix; the
extraction of components would stop when this average reached a min-
imum. This statistic appears to perform well in identifying the correct
number of components but it is limited to that form of extraction.
Another approach is to examine the chi-square statistic computed in
the context of an exploratory maximum likelihood analysis, continu-
ing to extract factors until the chi-square statistic is nonsignificant.

However, this test is negatively affected by the size of the sample
employed in the analysis, such that too many factors are likely to be
extracted with large samples.

8. One could, of course, first standardize scores on a measure
prior to computing a score to represent a factor. Such a procedure
makes it easy to reverse measures or items with negative weights on a
factor; you simply multiply their z score by –1. In general, you do not
need to go through a standardization procedure unless the measures
involved have different variances from one another. So, for example, if
you have factored items from a scale, then one can anticipate that the
variances of scores on the individual items will be very similar. However,
if you have factored scores from scales that vary in their variances, then
standardizing the scores prior to combining them together will ensure
equal weighting of the measures.

9. It should be noted that the statistical theory underlying these
methods assumes that one is testing the fit of the factor model to a
covariance matrix; indeed, an early label for these methods was “analy-
sis of covariance structures.” Although it is the case that one will often
get the same results when analyzing a correlation matrix, these meth-
ods should be applied to a covariance matrix. Bentler and Lee (1983)
and Cudeck (1989) discuss using these procedures to analyze correla-
tion matrices.

10. In an article appearing in the same issue of Structural Equation
Modeling as Hu and Bentler (1999), Fan, Thompson, and Wang (1999)
also examined the sensitivity of different indicators of model fit to
misspecification of the model, coming to different conclusions. Con-
sistent with Hu and Bentler (1999), they found that root mean square
error of approximation (RMSEA) and McDonald’s Centrality Index
(MFI) performed well. However, they also found that the goodness-of-
fit index performed well although the results were affected by sample
size. Other fit indices, such as the Tucker-Lewis Index and the Compar-
ative Fit Index, did not perform well. Finally, Fan et al. (1999) did not
evaluate the Standardized Root Mean Square Residual (SRMSR). These
differences in results may, of course, be an artifact of the models that
each group of researchers examined. Future studies need to examine
the models both groups of researchers used for the same set of fit mea-
sures, in an effort to ascertain why their conclusions were different.

11. As noted by Bentler (personal communication, August 5, 2001),
one must be cautious in drawing inferences about the effects of varia-
tions in number of parameters on model fit from the results of Jackson
(2001) because he did not investigate models that varied widely in the
number of parameters being estimated.

12. This work on missing data in the context of confirmatory factor
analysis raises a question concerning the treatment of missing data in
the context of an exploratory factor analysis. Exploratory factor pro-
grams available from SPSS or SAS are not designed to permit the esti-
mation of such models using the full-information maximum likelihood
(FIML) or expectation-maximization (EM) algorithms. However, one
can estimate an exploratory factor model using the FIML algorithm
using the Mplus program. Also, one can employ multiple imputation
in the context of testing an exploratory factor model. The use of multi-
ple imputation is described by Sinharay et al. (2001) using the NORM
program developed by Schafer (1997) or by Allison (2002) using Proc
MI that is now available from SAS.
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