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It has been said that "everybody believes in the law of errors [the
normal distribution], the experimenters because they think it is a
mathematical theorem, the mathematicians because they think it is
an experimental fact."1 There are excellent theoretical reasons to ex-
plain the preeminent position which the normal distribution has held
in the development of statistical theory.2

On the other hand, at some time or other nearly every experimenter
must work with samples which he knows do not come from a normalL f*—^'•--•^
distribution. If he knows what the distribution actually is then he
may find a transformation such that his transformed data are, observa-
tions from a normal distribution, or he may find a special theory al-
ready worked out (as for, say, the Poisson distribution). More often
he has no such knowledge of the population distribution, and then he
must choose between applying the textbook methods in violation of
their underlying assumptions, or of finding valid techniques which have
no underlying assumptions concerning the shape of the parent popula-
tion.

Until about fifteen years ago this was merely Hobson's choice, since
about the only distribution-free methods were^ rank correlation and
X2 tests. But there has recently been a great growth in statistical meth-
odology which provides the experimenter with tools free of assumptions
about the population distribution. These techniques are generally
referred to as Non-Parametric Methods, or sometimes, Distribution
Free Methods.

It is the purpose of this paper to present some of the principal
methods, and an intuitive explanation of their rationale, properties,
and applicability, with a view to facilitating their use by workers in
psychological research.

In many, but not all, of the methods discussed, the data to which
the tests are applied are not the original measurements in the sample

1 Cram6r cites Poincare's quotation of this famous remark by Lippman. (CRAMlsR,
H., Mathematical methods of statistics, Princeton Univ. Press, 1946, p. 232.)

2 Perhaps the most outstanding of these is the so-called Central Limit Theorem
which specifies (roughly) that means of "large" (enough) samples from any population
(except for some pathological cases which cannot occur in practice) are normally dis-
tributed. The discussion in this paper is not concerned with the "large sample case."
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but simply their ranks, or perhaps only their signs. This feature of
the methods arouses some criticism. It is intuitively obvious that a
statistical procedure that replaces each of the two sets of numbers
below by the same set of plus and minus signs:

~ ~ O j Oj i. 11 *~~ 1 i O j tO —p

-14, -14, -9.4, -.2, 5.7 h

is not using all the information the data provide—is "throwing away"
information. This is a less telling indictment than it seems to be. The
relevant question is not "How much information does a certain statisti-
cal procedure throw away?", but rather "Of the methods available— j
classical, or non-parametric—which best uses the information in the •
sample?" Since the answer to the question will depend on the sort of
population from which the sample comes, no general answer can be
given. In the literature of mathematical statistics (3, 23, 26) there are
examples of distributions where a non-parametric test which "throws
away information" is clearly superior to a i-test, for instance. How
the comparison would work in any given case is a matter of conjecture.
The following advantages and disadvantages of the non-parametric
methods should be considered:

Advantages of non-parametric methods:
1. Whatever may be the form of the distribution from which the sample

has been drawn, a non-parametric test of a specified significance level actually
has that significance level (provided that the sample has been drawn at ran-
dom; in certain cases as will be noted, it is also necessary to assume that the
distribution is continuous).

2. If samples are very small, e.g., six, there is in effect no alternative to a
non-parametric test (unless the parent distribution really is known),

3. If the sample consists of observations from several different populations
there may be a suitable non-parametric treatment.

4. The methods are usually easier to apply than the classical techniques.
5. If the data are inherently of the nature of ranks, not measurements,

they can be treated directly by non-parametric methods without precariously
assuming some special form for the underlying distribution.

6. In certain cases data can only be taken as "better" or "worse," that
is, an observation can only be characterized as a plus or minus. Obviously,
the classical tests are not directly applicable to such data.

Disadvantages of non-parametric methods :
1. If non-parametric tests rather than normal-theory tests are applied to

normal data then they are wasteful of data. The degree of wastefulness is
measured by the "efficiency" of the non-parametric test. If, for example, a
test has 80 per cent efficiency this means that where the data are from a normal
distribution, the appropriate classical test would be just as effective with a
sample of 20 per cent smaller size. The efficiency thus expresses the relative
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merits of the non-parametric test and the classical test under the Auditions
where the normal test is correct, but does not tell us how the tests will compare
on non-normal data.

2. The non-parametric tests and tables of significance values are widely-
scattered in the periodical literature.

3. For large samples some of the non-parametric methods require a great
amount of labor, unless approximations are employed.

TESTS BASED ON PLUS OR MINUS

The Sign Test. One of the best known and most widely applicable
of the techniques to be discussed in this paper is the statistical sign
test. A complete treatment will be found in (2). In many cases where
an experimenter wishes to establish that two treatments are different
(or that a particular one of the two is better) he is able to employ
matched pairs, one member of each pair being assigned (at random)
to treatment A, the other to treatment B. The classical technique is
to apply a i-test to the differences; the underlying assumptions are
that the differences are normally distributed with the same variance.
The assumptions underlying the sign test are simply: (a) that the vari-
able under consideration has a continuous distribution and (b} that
both members of any pair are treated similarly-—except for the experi-
mental variable. There is an assumption neither of normality nor of
similar treatment of the various pairs. Thus the different pairs may be
of different socio-economic status, age, 1Q, etc., so long as within each
pair such relevant extranea are comparable. The hypothesis tested is
that "The median difference is zero."3 The test is performed by con-
sidering the differences Xj>i — Xjn and noting whether the sign is plus
or minus. If the null hypothesis is true we expect about an equal num-
ber of plus and minus signs. The hypothesis is rejected if there are too
few of one sign. The probability level of any result can be evaluated
by the binomial expansion with p = \ and N = t\\e. number of pairs.
Tables of significance values for various sample sizes are available (1).
A table of sample sizes necessary to detect with probability .95 a de-
parture from the null hypothesis of various degrees (e.g., that
P(XA>XB) = .3) at significance levels .01, .05, .10, .25 is given by Dixon
and Mood (2). For N^3Q the normal approximation to the binomial
will suffice.

If it is desired to test not merely that treatments A and B differ,

3 The hypothesis is also properly expressed:

P(XA > Xs) = P(XB > XA) = i
This is read in words: the probability that XA will exceed XB is equal to the probabil-

ity that XB will exceed XA (and thus equal to 3). XA and -STsare two members of a pair.
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.t treatment A is actually better than treatment B, a significant
result Can arise only if the number of minus signs is too small.

An j:ctension of the sign test will permit one to determine whether A
is better than B by, say, 5 points. Formally the null hypothesis is:

-\-^} ^i.4 In this case one considers the differences Xja
and rejects the null hypothesis for too few minus signs.

Another extension enables one to determine whether A is better
than B by some specified percentage—say 10 per cent. The null hy-
pothesis is: P(XA > 1.10^) gsf. If a significantly small number of the
differences XA.I — (XBI) (1.10) are negative the null hypothesis is re-
jected. Both these extensions are applicable only where the numbers are
additive and the second is legitimate only if there is a zero point on
the scale.

The efficiency of the sign test (in the sense defined) declines from
around 95 per cent for TV = 6 (25) to 62 per cent for very large samples.
Where data are easily gotten, the extraordinary simplicity of computa-
tion sometimes justifies taking a larger sample and using the sign test,
even though the classical methods would be justified and more efficient.
In certain cases there is no substitute for the sign test, as where a pair
of protocols can be assessed as to which exhibits more "cooperation"
but there is little hope of a numerical evaluation.

The Median Test. In some cases where two treatments (or groups)
are to be compared as to whether they are drawn from populations
having the same median (or to determine whether a particular one of
the two populations has a smaller median), it is not possible to work
with matched pairs. The hypothesis can be tested by the median test
(16, p. 394). The samples need not be of equal size. Suppose there are
n X's and m Y's. Compute the median for the combined sample of
n-\-m observations. If the samples do come from populations with the
same median then we should expect about half of the X's to be above
the common median and about half below, similarly for the Y's. If
the relative proportions are too discrepant, we reject the hypothesis of
equality.

To perform the test, record a plus for any observation above the
common median, a minus for any observation below the median. Then
construct a 2X2 contingency table. For instance, suppose that an ex-
periment yielded the following data:

Control Group: (X) 10, IS, 13, 12, 12, 14, 11, 9
Experimental Group: ( Y ) 7, 7, 8, 6, 13, 9

4 In words this is read: the probability is at most J that XA will exceed XB by S. The
null hypothesis can also be expressed: the median difference Xj. — Xs is equal to at most
5 in the population.
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All observations greater than or equal to 11 are +'s; all 10 or less arc
—'s,

i

Experimental Group

Control Group

The significance of the data is evaluated in the same manner as if this
were a 2X2 test of independence. For such small frequencies as these
Fisher's exact method must be used (5, Sec. 21.02); for large enough
frequencies x2 with one degree of freedom is the test statistic, Yates's
correction being used unless the number of cases is large. If the hypothe-
sis is being tested against an alternative on one side only, i.e., the ques-
tion asked of the data is not "are the two medians equal," but "is
Md(JY') ^Md(F)," the ordinary techniques associated with %' and one-
sided test apply.

The assumptions underlying this test are that the X's and Y's are
random samples from their respective populations, and that the popu-
lation distributions are of the same form, differing only by a translation
up or down the scale. Although the test is derived using the second as-
sumption, Mood states that the test "is sensitive primarily to differ-
ences in location and very little to differences in shape."

TESTS BASED ON RANK ORDER

There is a group of important methods which deal with the data
in terms of their ranks. Four of the most important will be discussed
here: a rank test for matched pairs (27, 28); the "T" test of Wilcoxon
for two unmatched samples (27, 28), together with its extension by
Mann and Whitney (13); the analysis of variance by ranks (6); the
run test.

Wilcoxon's Matched Pairs Signed Ranks Test, Where the experi-
menter has paired scores XA< under treatment A and XBi under treat-
ment B, he can rank the differences in order of absolute size; he may be
unable to give numerical scores to the observations in each pair and still
be able to rank the differences in order of absolute size. The ranking is
done by giving rank 1 to the numerically least difference, rank 2 to the
next least, etc. If methods A and B are equivalent, that is, if there
is no difference and the null hypothesis is true, he should expect some of
the larger, and some of the smaller, absolute deviations to arise with A
being superior, some with B superior. That is, the sum of the ranks
where A is favored should be about equal to the sum of the ranks where
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B is favored. If the sum of the ranks for the negative differences is too
small, or if the sum of the ranks for the positive differences is too small,
the null hypothesis is to be rejected. Tables of significance values for
the smaller sum of ranks will be found in (27) for M (the number of pairs)
equal to 7 through 16. Tables for n from 7 to 25 are available in (29).
For « 3:25 the sum of ranks T may be taken as normally distributed
with mean = T = «(«+l)/4 and standard deviation \X(2w+l)T/6. For
example: suppose that seven pairs of rats are divided into a control
and an experimental group. Suppose that the data are their times to
run a certain maze and are as shown in Table 1,

TABLE 1

ILLUSTRATIVE DATA FOR TEST OF SIGNIFICANCE USING WILCOXON'S
MATCHED PAIRS SIGNED RANKS TEST

Pair

(a)
(b)
(c)
(d)
(e)
(f)
(g)

Total

Exp.

65
60
71
52
62
43
58

of ranks with

Control

SI
44
64
55
4Q
38
52

less frequent sign

Diff.
Exp-Control

14
16
7

-3
13
5
6

Rank
Diff.

6
7
4
1
5
2
3

Ranks with Less
Frequent Sign

1

1

First, it is worth noting that these data are amenable to treatment
by the sign test. Six of the differences have the same sign. The probabil-
ity of six or more signs alike, if in fact the median difference is zero,
is equal to 16/128 = 1/8. Therefore, these data would not be regarded
as cause for rejection using the sign test. But a closer examination of
the data shows not only that there was only one negative difference
but that it was the smallest difference in the set. These data argue more
strongly against the null hypothesis than would the same set of differ-
ences with, say, pair (e) being the sole negative difference (or indeed
any other one difference) though any of these possible samples would
be treated identically by the sign test. It turns out that application
of the rank test under consideration will adjudge these data as signifi-
cant; essentially the different answer arises from exactly the consider-
ations just sketched—the size of the sole negative difference is taken
into account.
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Wilcoxon's tables tell us that for n = 7 a rank total of 2 or less for
one of the groups is significant at level .05, and the null hypothesis of
equality of treatments is rejected. The tables referred to are for two-
sided tests. If one desires to test a one-sided hypothesis he may use the
.05 level to determine a test of significance level .025, provided that
the observed values lie in the direction of rejecting the one-sided hy-
pothesis. Similar remarks apply to other significance levels.

A confidence interval for the difference in the treatment effects can
be obtained as follows. Suppose that to the time of every rat in the
control group 4| seconds were added, then all the differences would
have the same sign as at present, the ranks would be the same, and the
treatments would still be adjudged as significantly different. However,
if 5| seconds were added to each control group score the groups would
not differ significantly. The boundary for this argument occurs at 5.
Similarly, if 14| be added to all the control group times the differences
become all negative except for pair (b) which is then +1^ having a
rank of 2.5 (it is tied with (e) for second and third place); this gives a
"smaller rank total" of 2.5 which is not significant. But if 14 2/3 were
added to each control group score then (b) would be the lone positive
difference with rank 2; this would be significant. Since alterations in
the differences' greater than 5 and less or equal to 14.5 do not yield a
significant difference, but values outside this range do, we can take 5
to 14| as a 95 per cent confidence interval for the increase in running
time associated with the experimental treatment.

Mann-Whitney "U" Test. Where the observations are not made on
matched pairs, but two unmatched groups are to be compared, the
Mann-Whitney " U" test (or in the case of equal sized groups, its equiva-
lent, the Wilcoxon "T" test) for two samples can be applied.

The null hypothesis which is tested is that the two groups of obser-
vations'—say n X's and m Y's—have been drawn from a common popu-
lation (that is, "there is no difference"). The test is designed to detect
(roughly stated) whether one population has a larger mean than the

.' other. Precisely stated, it is designed to guard against the alternative
hypotheses that for every a, P(X > a) £ P( Y> a) or P(X > a) g P( Y> a).
A special case (unnecessarily restrictive) is where X and F are assumed
to have the same distribution except for a translation along the scale,
so that the X's are all smaller—or all larger—than the "corresponding"
Y's; here the null hypothesis says that there is no translation at all, and
the test has the property that if in fact there is a positive or negative
translation, then with a sufficiently large sample the test will reject
the null hypothesis with any desired degree of probability.
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To apply the test one arranges the m-\-n observations in increasing
order of size (algebraic sign,not being ignored) and substitutes their
ranks (1 for the smallest, m+n for the largest). If the two samples
were of equal size, so that m=n, the sum of the ranks for the X's should
about equal the sum of the ranks for the F's under the null hypothesis.
If m^n then the sums would be roughly proportional to the sizes m and
n. The test consists in determining whether the observed discrepancy^
is too large to have arisen reasonably by chance, with the null hypothesis
being true.

Tables of significance values for all possible pairs of sample sizes
with w^8, w^8 are given in (13). For m and n both greater than 8
the test statistic is nearly normally distributed and the test of signifi-
cance is made by employing this fact. If m, «=j8, then U is normally dis-
tributed with mean mn/2 and standard deviation -\/mn(n+m-\-l)/l2',
one has merely to rank the m-\-n observations from least to great-
est, find T, the sum of the Y ranks, and from this calculate U, and see
whether it is too many standard deviations removed from its expected
value, mn/2. \ - -

TABLE 2 \

ILLUSTRATION FOR THE MANN-WHITNEY " U" TEST

Variable Observation Rank

X'
X

".-^ Y
f !-,:- X
i - - , -v .v . .^ - x

Y
• - - ; ' { \ Y'' '""''' '" " ''*"" X

X
X
Y
X
Y
Y

2 X ranks = 51
r=]r Franks =54.

10.2
12.8
13.4
13. S
16.0
17.1
17.3
18.0
18.2
19.0
19.4
19.5
21.3
24.0

^-... v r

1 *V
2 #-1-;" ''

A -^*" . "'"~-/
' "' ^'

5 \^\-'
=,

6
7
8
9

10
11
12
13
14-

As an example, suppose that there were 8 X's and 6 F's, so that m = 6,
n — 8 and that the data arranged in order of size were as shown in Table
2. The tables of significance are given in terms of U where
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m(m +1)
U = mn + — - T.

> - • • ' -•- „•- -/
Here t/ = 6X8 + (6X7/2)-54 = 15.

I1! •; • J, ( • ; - ' >"-'' ;

The table for n — 8 tells us that a U as small as 15 has a probability level
of .141; so that the null hypothesis is accepted.

In using these tables the reader will find that the probability of
small values of U is given, To find the probability U^k where k is a
number larger than those given in the tables he uses the identity:

P(U ^ k\ nX's, m F's) = P(U ^ mn - k nX's, m F's).

It is further to be noted that m and n are entirely symmetrical, so that
P\U=k\n X's, m Y's}=P\U = k\m X's, n F's}.

As an example, suppose that an experimenter has 5 X's and 8 F's
and that the sum of the F ranks, T, is 39. Then

8(8 + 1)
U = 6 X 8 + — - 39 = 45.

This is a large value of U and is not tabled; to decide whether or not
it is significantly large we note that

P(U ^ 45) = P(U ^ 6 X 8 - 45) = P(U = 3).

The tables tell us that this probability is .002.
Analysis of Variance with Ranked Data. The assumptions underlying

the analysis of variance are: the observations are independent; they are
drawn from normal populations all of which have the same variance;
the means in these normal populations are linear combinations of
"effects" due to row and/or columns, etc., that is, effects are additive.

Correlation among the observations would be perhaps the most
dangerous assumption failure; but careful design should usually elimi-
nate this. In some cases both normality of distribution and homogeneity
of variance can be approximated either in the data, or by some trans-
formation. In other cases this cannot be done. The analysis of variance
by ranks is a very easy procedure and does not depend on such assump-
tions. It has the further advantage of enabling data which are inherent-
ly only ranks to be examined for significance.

Let there be n replications of an experiment where each subject
undergoes a different one of p treatments. In each replication there are
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a different p subjects. Data from such an experiment might be as fol-
lows:

TABLE 3

ILLUSTRATION FOR ANALYSIS OF VARIANCE WITH RANKED DATA

Group 1
Group 2
Group 3
Group 4

A

11(2)
12(3)
16(3)

9(1)

B

14(4)
11(2)
17(4)
11(3)

Treatment

C

13(3)
13(4)
14(2)
14(4)

D

9(1)
10(1)
13(1)
10(2)

E

20(5)
18(5)
19(5)
16(5)

Rank totals 9 13 13 5 20

The numbers appearing in parentheses are the ranks from least to
greatest within each row (replication). If the treatments A, B, C, D, E
(p = 5) are not different, then the rank totals would be expected to turn
out about equal. In the present example there seems to be a marked
disparity. To evaluate its significance we compute the statistic xA
done below, which has approximately the x2 distribution with p — l
degrees of freedom,

12
Xr2 = - , - x Sum (rank totals)2 - 3n(p + 1)

np(p + 1)

Here n — 4, p = 5 and the statistic becomes :

- 12(6)

= 12.4

For 4 degrees of freedom this is significant at level .02 but not .01.
If the groups 1, 2, 3, 4 in the example themselves represented four

treatments, or age levels, etc., then a test of the equality of those four
treatments could also be made by interchanging rows and columns.
For that test %,2 would have 3 degrees of freedom since then £ = 4,
w = 5.

A full treatment of the mathematical basis for the test is given by
Friedman (6). Kendall and Smith (12) give exact probabilities for small
m and n, and a detailed consideration of the closeness of approximation
and recommendations for evaluation of significance levels are given in
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Friedman's article (7). Wilcoxon (2Q) gives several instructive illus-
trations showing, among other things, how interactions can be tested.

Wald-Wolfowitz Run Test. The final test employing ranked data
which will be considered is the Wald-Wolfowitz run test. This is a
test of the hypothesis that two samples (not necessarily of equal size)
have been drawn from a common population. It has the property that if
the X's and Y's are not from a common population then, no matter in
what way the populations differ (dispersion, median, skewness, etc.) the
test will—for sufficiently large samples—reject the null hypothesis with
probability as near to 1 as is desired. The application of the test is
extremely simple.

Just as for the U test, arrange the combined sample of m Y's and
n X's in increasing order. Then a run is defined as a sequence of letters
of the same kind which cannot be extended by incorporating an ad-
jacent observation. Thus there are 9 runs below:

Xl X, F! X3 F2 F3 F4 F6 X< X6 F6 X6 X^ Xs Y-, X, Xw

The X runs are underlined; the Y runs stand between them.
Now if the two samples are from a common population then the X's

and F's will generally be well mixed and the number of runs will be
large. But if the X population has a much higher median, then there is
to be expected a long run of F's at one end, a long run of X's at the
other, and consequently a reduced total number of runs. If the X's
come from a population with much greater dispersion then there should
be a long run of ̂ 's at each end, and a reduced total number of runs.
Similar arguments apply to opposite skewness, etc. Generally, then,
rejection of the null hypothesis will be indicated if the runs are too
few in number. An important application of the run test is to test
randomness of grouping; in some such cases either too many or too few
runs might be basis for rejection. A nice example is given by Swed and
Eisenhart (24) where the question at issue is, are seats at a lunch counter
a half hour before the rush hour occupied at random? Very many runs
of occupied and empty seats would clearly be an a priori cause for re-
jection. So would too few runs if the possibility of friends coming
together was to be considered. In the example to which the U test was
earlier applied, only too few runs would be reasonable cause for rejec-
tion if the X's and F's represented, say, examination scores for two
different statistics classes.

The run test can also be applied to a series of events ordered in time.
Let there be n observations arranged in order of the time at which they
were taken. Let those greater than the median be denoted by X, those
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less than the median by F. If one suspects a time trend-—-like gradual
increase—or a "bunching" in time due to change in attitude, etc., he
would reject for too few runs.

Tables of significance for the run test are given by Swed and Eisen-
hart (24), for m, n^2Q. For larger samples the number of runs d can
be taken as being normally distributed with mean = (2mw/tw-)-«)-)-1
and

2inn(2mn — m
standard deviation = '

+ ri)*(m + n- 1)

Mood (16) states that for practical purposes this approximation will
suffice for m, n^ 10. To apply this large sample theory one merely de-
cides before taking the sample whether rejection is indicated by too
many, or too few, (or either) runs and then sees whether d is too many
standard deviations removed from its expected value in the rejection
direction.

Mathematical investigations of this test indicate that because it
guards against all kinds of difference between the distribution functions
of X and Y it is not very powerful against any particular class of alterna-
tives. Thus, if one were interested in detecting whether one population
had a greater median than another he would do better to employ a
test such as the U test. A related point is that when one rejects the
null hypothesis on the basis of the run test, he can assert that the two
populations differ—but he has little if any clue as to how they differ.
Often the purpose is to establish that there is a difference in means, or
dispersion, and the run test gives an answer which is not easy to inter-
pret.

The only assumption involved in the run test is that the common
population is continuous. This assumption is involved in all the tests
depending on rank presented here. Generally, if there is a small number
of ties the average rank for each set of tied observations may be given
to each and the test carried through.

RANDOMIZATION TESTS
There is a variety of non-parametric tests which employ the numeri-

cal values of the data themselves. Among the most important of these
are techniques based on the method of randomization. This kind of test
was proposed by Fisher (4, Sec. 21), and has received extended treat-
ment and development by Pitman (21, 22).

Matched Pairs. All the randomization tests are based on parallel
logic. The simplest with which to exhibit the rationale is the matched
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pair case. Suppose, for example, that we have two observations (one
under condition A, the other under condition 5) on each of seven
individuals. The null hypothesis is that conditions A and B are no
different; the data are shown in Table 4. The average difference is

TABLE 4

ILLUSTRATION FOR RANDOMIZATION TEST USING MATCHED PAIRS

1
2
3
4
5
6
7

14.9
17.3
14.9
18.1
12.0
19.4
15.6

15.5
16.5
13.2
16.0
12.1
18.1
11.4

-.6
.8

1.7
2.1
-.1
1.3
4.2

9.4

1.34, but is it significantly different from zero at, say, the S per cent
level? To answer this with the i-test we would assume that the differ-
ences were normally distributed with a common unknown variance.
We can get an exact test assuming only that the di are random samples
from a common population. If the null hypothesis is true, then condi-
tions A and B are experimentally indistinguishable, and for any indi-
vidual the distinction between his XA. and XB is merely a convention of
labelling; in particular, the difference XA3 — Xm = 1.7, say, is just exactly
as likely as that XBZ~XAS — 1.7. This means that associated with this
sample are many other possible ones, all of which (under the null
hypothesis) were exactly as likely to occur as this. For instance, the
sample might just as well have turned out: +-6, —.8, —1.7, —2.1,
+ .1, -1.3, +4.2 or +.6, +.8, +1.7, +2.1, +.1, -1.3, -4.2, etc.
In all, there are 27 = 128 such outcomes, all equally likely under the null
hypothesis that the treatments A and B are experimentally indistin-
guishable. With each of these is associated an S = Sc?j. Some of these
128 S's are just about what one would expect if the null hypothesis
were true, i.e., near zero. A few are well removed from zero—and much
like what we expect under an alternative hypothesis such as the popu-
lation mean of A exceeding that of B—or vice versa; we write these
A ^ > M B and ps> V-A in the sequel. To get an exact test of, say, level
.05, we select of the samples which we can thus generate, that 5 per
cent of them most likely under the alternatives we wish to guard against,
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and constitute these chosen possible samples as our rejection region.
In the present case, .05(128) =6.4, so we choose six possibilities. The
probability of getting one of these six samples under the null hypothesis
is 6/128 = .047. Then if the sample we actually drew is one of these
listed for the rejection region we reject the hypothesis of equality of A
and B. In our numerical example, if the investigator's "experimental
hypothesis" had been: condition B leads to larger scores on the average
than does condition A, he would test the null hypothesis of equality of
A and B but would reject it only if the di were predominantly negative.
If they were predominantly positive or well balanced he would have to
regard the data as failing to support his experimental hypothesis. His
rejection region would be six samples giving the greatest negative S.
If he actually desired only to determine whether the two conditions
yield different average scores then he must regard either a large positive
S or a large negative 5 as cause for rejection, and his rejection region
would consist of the three samples yielding greatest -\-S and the nega-
tives of these samples, which will yield the greatest —S.

Let us find the two-sided region just described. If all the di were
positive then S would be 10,8, its maximum value. The next largest
possible value for 5 (10.6) would be where all but d6 = .l were positive.
Such considerations lead to the following list of the first 5 positive
samples in order of size of S:

.6 .8 1.7 2.1

.6 .8 1.7 2.1
-.6 .8 1.7 2.1

*-.6 .8 1.7 2.1
.6 -.8 1.7 2.1

Thus the sample we obtained, which has been starred, lies in the ac-
ceptance region and the null hypothesis stands. If, however, only the
alternative HA > MB was being tested against, then the top six positive
values would be the 5 per cent rejection region, and our sample, being
4th, would lie in it.

For large n, say 20, the number of possible samples which we can
generate by altering signs on the given numbers is large (220> 1,000,000)
and even listing a 1 per cent rejection region is a massive undertaking.
There are two principal alternatives. Wilcoxon's T test, where ranks
are substituted for numbers, may be used (in fact, the T test may be
regarded as a randomization test on the ranks—and this clue should
enable the reader to find the one-sided significance points for the T
test where n is small). The second alternative is that where «2>12

1.3
1.3
1.3
1.3
1.3

4.2
4.2
4.2
4.2
4.2

S
10.8
10.6
9.6
9,4
9.2
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(roughly), and where the di are of roughly the same size (as a rule it
might be safe to require (d}?/'Sdi2)^5/2n, where dt is the largest dif-
ference in the set) a normal approximation can be used.

Each df, under the null hypothesis, is a chance variable taking the
values +di each with probability 5. The di are independent. One form
of the central limit theorem ensures that under the conditions given, the
exact distibution of 2 = S/\/Y^d? in the' 'randomization distribution" will
be very closely approximated by the unit normal distribution. This test
is obviously easy to apply. On data which are in fact normally dis-
tributed it is 100 per cent efficient for large samples. Examples of non-
normal populations can be given where despite this efficiency it is an
inferior test as compared with the rank T test (which has large sample
efficiency of 95 per cent).

Two Sample Test. A randomization significance test for two samples
has the same underlying logic. Let there be n X's and m Y's. If there
is "no difference" then the fact that in the pooled ordered sample a
particular n observations are labelled X is, so to speak, one of many
equally likely accidents. All together there are

/TO + »\

V n )

(in + n)!

m\ n\

equally likely ways in which the relabelling might be done. For cer-
tain of these the "spread" or difference between SJY" and SF is extreme.
The construction of the test consists in choosing a number k of these
for a rejection region. If a. is the significance level then k is chosen so
that

k
/TO + tt\

= a l 1.
\ n /

as nearly as is possible. The choice of which k most extreme possible
outcomes should constitute the rejection region depends, as always,
on what alternatives are to be guarded against.

An example follows:

X Y
11.6, 12.1, 12.2, 12.6, 13.1 9.5, 10.7, 11.8

We test JUX = /JF against the alternative (J,X~>HY-
The arithmetic is made more convenient if from all numbers we

subtract 9.5, and then multiply by 10. We now have:

21 26 27 31 36 0 12 23
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The average of these eight numbers is 22. If, then, the null hypothesis
is true we should expect to find SF near (3) (22) = 66. In all there are

/S + 3\ 8.7.6
I ) = = 56
\ 3 / 1.2.3

possible equally likely samples. If we are working at level .05 we shall
choose the 2 samples (out of the 56) most likely under the alternative
hypothesis /J,X>HY. These are, obviously

23 26 27 31 36 0 12 21
and

21 26 27 31 36 0 12 23

The second of these is the sample we obtained, and the null hypothesis
is rejected. For illustrative purposes the six most extreme (two-sided)
samples are listed below:

X V £ 7-66
23 26 27 31 36 0, 12, 21 33-66=33
0 12 21 23 26 27, 31, 36 94-66=28

21 26 27 31 36 0, 12, 23 35-66=31
0 12 21 23 27 26, 31, 36 93-66 = 27

21 23 27 31 36 0, 12, 26 38-66 = 28
0 12 21 26 27 23, 31, 36 90-66 = 24

If m and n are large, the carrying out of these computations becomes
essentially impossible. But again there exists a convenient approxima-
tion to the distribution of the statistic in the randomization distribution
of

( m-\-n\

n )
possible sample values.
Provided that:

(1) l/4^(m/»)^4.
(2) (^//^22) — 3 (The kurtosis computed for the pooled sample), not

large; then the following statistic has approximately the t distribution
with m-\-n — 2 degrees of freedom:

Y-X

J^L(Y -YY+ E ( x - 3 f ) ' / i , i \/\i - 1 — . _j — i
m + n — 1 \m n /

It is a curious result; this is the ordinary t statistic. This means that
provided conditions 1 and 2 hold (and these can be checked from the
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sample) the t statistic actually gives a test of the stated significance
level without the usual assumptions being a part of the inference. It
has not been assumed that X and F are normally distributed with a
common variance.

If the distributions of X and Y both have finite variance, but
different means, the probability that the test will reject the null hy-
pothesis tends to one as both m and n become large. If the distributions
are different but have the same mean this is not so.

An alternative to the use of the t statistic to approximate the ran-
domization distribution is to employ the Mann-Whitney U test. There
are circumstances under which the U test (though it "throws away"
data by reducing the observations to ranks) is the better test. The U
test may be regarded as test of the randomization type applied to the
ranks of the observations.

Confidence Intervals. In both these cases (paired or unpaired ob-
servations) confidence intervals can be obtained by adding equal incre-
ments to one set of values until a significant positive difference is first
reached, and then altering them still further until a significant nega-
tive difference is first reached. These two extreme alterations, constitute
the end points of a confidence interval for the true difference. If the
approximations (normal, and £) are to be used, then the conditions for
their validity must hold at these extreme points; otherwise the exact
procedure has to be used.

Correlation and Tests of Independence. The problem of correlation
can also be attacked by the randomization method. That is, one can
test the hypothesis of zero correlation with samples of small (or large)
size without making assumptions about the form of the joint distribution
of X and Y. For a treatment of the problem, see (22).

TESTS OF INDEPENDENCE

When one has a pair of observations (Xi, F,-) for each member of
his sample and desires to test the independence of X and Y there are
numerous techniques available. The rank-order correlation coefficient,
or T, Kendall's rank-order statistic (11), may be used. The product-
moment coefficient can be tested non-parametrically as mentioned in
the'preceding paragraph.

In addition there is an extraordinarily easily applied method, Olm-
stead and Tukey's corner test of association (20). Its efficiency and other
properties await a full mathematical investigation, but informed opinion
holds that it is likely to be a very good test.
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To apply the test one first plots the observations in a scatter dia-
gram. Then, following simple rules given by Olmstead and Tukey (20)
and also by Mood (16), the statistician measures the degree to which
the data are concentrated in the "corners" of the scatter diagram.
(The instructions referred to essentially define the "corners.") If a
substantial number of observations are concentrated in diagonally
opposite corners (which would be expected in the presence of strong
association between the variables), then the null hypo thesis of inde-
pendence is rejected. Although the use of this technique is simple, the
explanation of how to construct the corners is rather lengthy and will
be omitted here. The test is entirely distribution-free. Because of
its ease of application it should find frequent use as a preliminary test
to determine whether a product-moment correlation coefficient is worth
computing in cases where the latter is fully justified.

There also exist non-parametric methods for linear regression, in-
cluding tests of significance. They will not be taken up here, but a full
treatment of both their mathematical theory and method of applica-
tion is given by Mood (16, ch. 16). In this source there is also a tech-
nique for analysing one and two factor experiments; an alternative to
the analysis of variance by ranks. All these methods depend upon the
way in which the medians of various subclasses behave. They are all
completely distribution free. As an attack on the analysis of variance
problem they are more flexible than analysis of variance by ranks, but
are less efficient, and probably not to be preferred for problems of an
uncomplicated design.

PERCENTILES

If one has a sample of n observations and wishes to estimate the
percentiles of the parent distibution he will, of course, employ the per-
centiles in the sample. Confidence intervals (confidence coefficient
1 —a) may be obtained as follows. If the sample is arranged in order of
increasing size:

Xi, Xz, Xa, • ' ' , Xn

then Xi is the smallest observation, X2 the next smallest, etc. Let |p
denote the 100 p percentile. Then
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Using tables of the binomial distribution (19), one then chooses r and
s so that the probability (the value of the sum) is at least 1 —a.

If there are ties in the data then

For example, a .90 confidence for the 40th percentile in the population
from which this sample comes:

17 21 23 24 24 35 27 30
AI A2 A3 A< Ag Ae AV AS

is:

17 to 27,

that is:

Xi to X7.

Since:

s-< .90,

where we have p = A, n-&.
For large samples the binomial sum can be approximated by the

normal distribution. The index i is approximately normal (for large »)
with mean np and standard deviation \fnpq_. So to obtain a 95 per cent
confidence interval one would count 1.96 -\/npq observations to the
right and to the left of the IQQp sample percentile to find the observa-
tions whose numerical values constitute a 95 per cent confidence inter-
val.

SOME OTHER NON-PARAMETRIC METHODS

Certain important topics in the field of non-parametric methods
have been either completely omitted, or merely mentioned in this paper.
Among these are:

Rank Correlation Methods. A recent book by Kendall (11) provides
the experimenter with a rather generous variety of techniques not else-
where published. Among other matters of interest considered there
are: tied ranks, coefficient of concordance (with significance test) to
measure agreement among more than two judges, significance of the
difference between two non-zero rank-order correlation coefficients.
Work is being done in this field by Kendall and his associates and addi-
tional results will be published in the near future.
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Kolmogorov-Smirnov Tests. These tests serve as alternatives (pref-
erable for certain reasons) to x2 for two classes of problems:

1. To test the hypothesis that a random sample has been drawn from a
population with a certain specified distribution.

2. To test that two random samples (of not necessarily equal size) have
been drawn from the same population. The methods apply only where the
chance variable is continuous, An excellent non-mathematical discussion, with
tables and examples, is given by Massey (14). Some more recent results and
tables for the two-sample problem are also given by Massey (IS).

Tests for Randomness of a Sequence of Numerical Observations, The
Wald and Wolfowitz run test discussed in this paper is one test of this
sort, where two groups of observations are involved. Where there is
only one sequence of observations, perhaps ordered in time, one may
still wish to know whether they may be regarded as a random sequence.
An informative non-mathematical discussion of this problem, with
several tests, is found in Moore and Wallis (17).

Tolerance Intervals. One can ask the question: "Between what limits
can I be nearly sure (say 95 per cent, or 99 per cent, etc.) that at least
90 per cent (or 80 per cent, or 98 per cent, etc.) of the population values
lie?" These limits are called tolerance limits. The problem clearly
differs from the confidence interval problem, which is concerned with
location of the population mean, or a certain population percentile,
etc.

A brief discussion will be found in Dixon and Massey (1). Some use-
ful charts which eliminate computations are given by Murphy (18),
where the relevant literature is also cited.

LITERATURE ON NON-PARAMETRIC METHODS

The textbook literature presents few extended treatments of non-
parametric methods. Of those known to the writer, one of the fullest,
and surely the least mathematical, is Chapter 17 of Dixon and Massey's
text (1). For the reader with facility in advanced calculus many im-
portant methods are explained and derived in Chapter 16 of Mood's
text (16). At a mathematical level intermediate between these two is
Chapter 8 of Johnson's text (Q) and Chapter 9 of Hoel's text (8). Final-
ly, the mathematically mature reader will find many of the techniques
taken up in this paper (and some others) discussed in somewhat greater
detail in Chapter 21, Volume II of Kendall's advanced book (10).

A paper by S. S. Wilks (30) affords a complete but terse review of
the whole field up through about 1947. The treatment requires a good
knowledge of mathematical statistics. A full bibliography is included.
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The following bibliography is not intended to be complete. The read-
er who wishes to explore any one topic in detail will find little difficulty
in uncovering the relevant literature with the aid of the references cited
in the papers listed here.

BIBLIOGRAPHY

1. DIXON, W. J., & MASSEY, F. ]., JR.
Introduction to statistical analysis,
New York: McGraw-Hill, 19S1. .

2. DIXON, W. J., & MOOD, A. M. The
Statistical Sign Test. J. Amer.
statist. Ass., 1946, 41, 557-566.

3. FESTINGER, L. The significance of
difference between means without
reference to the frequency distribu-
tion function. Psychometrika, 1946,
11, 97-106.

4. FISHER, R. A. Design of experiments.
London: Oliver and Boyd, 1936.

5. FISHER, R. A. Statistical methods for
research workers. London: Oliver
and Boyd, 1925.

6. FRIEDMAN, MILTON. Use of ranks to
avoid the assumption of normality
implicit in the analysis of variance.
J. Amer. statist. Ass., 1937, 32,
67S-701.

7. FRIEDMAN, MILTON. A comparison of
alternative tests of significance for
the problem of in rankings, Ann.
math. Statist., 1940, 11, 86-92.

8. HOEL, P. G. Introduction to mathe-
matical statistics. New York: Wiley,
1947.

9. JOHNSON, P. 0. Statistical methods in
research. New York: Prentice-Hall,
1949.

10. KENDALL, M. G. The advanced theory
of statistics, Vol. II. London:
C. Griffin and Co., 1948.

11. KENDALL, M. G. Rank correlation
methods. London: C. Griffin and
Co., 1948.

12. KENDALL, M. G., & SMITH, B. B. The
problem of m rankings. Ann. math.
Statist., 1939, 10, 275-287.

13. MANN, H. B., & WHITNEY, D. R. On
a test of whether one of two random
variables is stochastically larger

than the other. Ann. math. Statist.,
1947, 18, 50-60.

14. MASSEY, F. J., JR. The Kolmogorov-
Smirnov test for goodness of fit. J.
Amer. statist. Ass., 1951, 46, 68-78.

15. MASSEY, F. J., JR. The distribution of
the maximum deviation between
two sample cumulative step func-
tions. Ann. math. Statist., 1951, 22,
125-128.

16. MOOD, A. M. Introduction to the
theory of statistics. New York:
McGraw-Hill, 1950.

17. MOORE, G. H., & WALLIS, W. A.
Time series significance tests based
on signs of differences. J. Amer.
statist. Ass., 1943, 38, 153-164.

18. MURPHY, R. B. Non-parametric
tolerance limits. Ann. math.
Statist., 1948, 19, 581-589.

19. NATIONAL BUREAU OF STANDARDS.
Tables of the binomial probability
distribution. Washington, D. C.:
U. S. Government Printing Office,
1949.

20. OLMSTEAD, P. S., & TUKEY, J. W. A
corner test for association. Ann.
math. Statist., 1947, 18, 495-513.

21. PITMAN, E. J, G. Significance tests
which may be applied to samples
from any population. Suppl, J.
Royal statist. Soc., 1937, 4, 119.

22. PITMAN, E. J. G. Significance tests
which may be applied to samples
from any population, II. The cor-
relation coefficient test. Suppl. J,
Roy. statist. Soc., 1937, 4, 225.

23. PITMAN, E. J. G. Notes on non-
parametric statistical inference.
(Unpublished.)

24. SWED, F. S., & EISENHART, C. Tables
for testing randomness of grouping



NON-PARAMETRIC STATISTICS 143

in a sequence of alternatives. Ann,
math. Statist., 1943, 14, 66-87.

25. WALSH, J. E. On the power of the
sign test for slippage of means.
Ann. math. Statist., 1946, 17, 358-
362.

26. WHITNEY, D. R., A Comparison of the
power of non-parametric tests and
tests based on the normal distribution
under nonnormnl alternatives. Un-
published Ph.D. dissertation at
Ohio State University, 1948.

27. WILCOXON, FRANK. Individual com-

parisons by ranking methods, Bio-
metrics Bull., 1945, 1, 80-82.

28. WILCOXON, PRANK. Probability tables
for individual comparison by rank-
ing methods. Biometrics, 1947, 3,
119-22.

29. WILCOXON, FRANK.' Some rapid ap-
proximate statistical procedures.
American Cyanamide Co., 1949.

30. WILKS, S. S. Order statistics. Bull.
Amer. math. Soc,, 1948, 54, 6-50.

Received July 19, 1051,


